NASA Technical Memorandum 102553

PROTEUS Two-Dimensional Navier-Stokes
Computer Code—Version 1.0
Volume 3—Programmer’s Reference

Charles E. Towne, John R. Schwab, and Thomas J. Benson
National Aeronautics and Space Administration

Lewis Research Center
Cleveland, Ohio

Ambady Suresh
Sverdrup Technology, Inc.

NASA Lewis Research Center Group
Cleveland, Ohio

March 1990

NASA

(AT A=TY=10713% 5) PROTONS [WLo-OIMIENSIONAL NOu=21301
AT =T TR s CTYMPUTER CUTL, VeRSTOM 1.0,

VIL T b T A S RCF LR NCT (MATA)

S LoeL 260 nclous

3
cAf6 DI ARTECE

PROTEUS Two-Dimensional
Navier-Stokes Computer Code

Version 1.0

Volume 3 - Programmer’s Reference

NASA Lewis Research Center
Internal Fluid Mechanics Division
Computational Methods Branch
September, 1989

CONTENTS

S UMM RY oot e e e e e e e e e e e e e e s e 3
1.0 INTRODUCTION i e it e sttt e ettt et e s s saasaasaessansns 5
20 PROGRAM STRUCTURE . ..ttt ittt ittt es e i e st 7
21 FLOW CIHIAR T o e e 7

22 SUBPROGRAM CALLING TREE e 10

23 PROGRAMMING CONVENTIONS AND NOTES ... oo oo 13
231 Computer & Language 13

2372 Fortran Vamables . . . o e e 14

3.0 COVMMON BLOCKS ot e i e et et e e et s et i e e as 17
31 COMMON BLOCK SUMMARY . e e 17

32 COMMON VARIABLES LISTED ALPHABETICALLY o 17

33 COMMON VARIABLES LISTED SYMBOLICALLYo oo a3

3.4 COMMON VARIABLES LISTED BY COMMON BLOCK oo oo 12
Common Block BO Tl e e 42
Common Block DUMNMY L . . e 44
Common Block FLOW I e e e e 45
Common Block GM IR Y 1 . . e 18
Common Block TC L . e 48
Common Block TO L . . e e e 49
Common Block METRICT . o e e e e e 50
Common Block NUMI L e 51
Common Block RS TR T e 54
Common Block TIME L e 54
Common Block TITLEL ... e e e e e e 56
Common Block TURBI . .. e e e e 56

4.0 PROTEUS SUBPROGRAMS oot e e e e et e et r e e e DY
4.1 SUBPROGRAM SUMMARY ... 59
4.2 SUBPROGRAM DETAILLS .. e e 61
Subroutine AL . . e 62
Subroutine AVISC Y . 63
Subroutine AVISC 2 e 66
Subroutine B NS 69
Subroutine BOELLIM L L e 72
Subroutine BOE . e e 73
Subroutine BCELIN e 78
Subroutine BCGE N 80
Subroutine BCGRAD 82
Subroutine BN T . . 83
Subroutine BOUPRE S . e 84
Subroutine BCOQ .. 91
Subroutine BUSE T o e e 95
Subroutine B TEM P . e 97
Subroutine BOUNE L . e 103
Subroutine BV DR 107
Subroutine BV VL L e 116
Subroutine BOWYVE L . . o e 120
Subroutine BLIN T L e e e e 124

PROTELS 2-D Programmer’s Reference

Contents 1

Subroutine BLIN2 oo o 126

BLOCK DATAo 127
Subroutine BLKOUTo 129
Subroutine BLK3 0 oo 130
Subroutine BLK3P o o oo 132
Subroutine BLK4 oo 134
Subroutine BLK4P oo 135
Subroutine BLKSo oo o o 136
Subroutine BLKSP oo o0 137
Subroutine BLOUTL e 138
Subroutine BLOUT2 oo 140
Subroutine BVUP ... oo 141
Subroutine COEFC oo 143
Subroutine COEFE oo 147
Subroutine COEFX oo 155
Subroutine COEFY o 162
Subroutine COEFZo 170
Subroutine CONVo oo o 175
Subroutine CUBICo 177
Subroutine EQSTAT 179
Subroutine EXEC 181
Subroutine FILTER 186
Subroutine FTEMP 188
Subroutine GEOM 0 o 191
Subroutine INIT ... oo o o 194
Subroutine INITCl 195
Subroutine INPUTo 200
Function ISAMAX L 202
Function ISAMIN ... oo 0 204
MAIN Program ... oo oo 205
Subroutine METS o 208
Subroutine OUTPUT/ 210
Subroutine PAK o o oo 212
Subroutine PERIOD oo 214
Subroutine PLOT 216
Subroutine PRTHST oo 219
Subroutine PRTOUT oo 220
Subroutine RESID o 221
Subroutine REST o oo oo 224
Subroutine ROBTS oo 226
Function SASUM oo 228
Subroutine SGEFA 229
Subroutine SGESLo oo 230
Function SNRM2 o 231
Subroutine TBC 0 oo 233
Subroutine TIMSTP oo 235
Subroutine TURBBL= 238
Subroutine UPDATEo 241
Subroutine VORTEX 243
REFERENCES ... o 245

2 Contents PROTEUS 2-D Programmer’s Reference

PROTEUS TWO-DIMENSIONAL
NAVIER-STOKES COMPUTER CODE - VERSION 1.0

Volume 3 - Programmer’s Reference

Charles E. Towne, John R. Schwab, Thomas J. Benson

National Aeronautics and Space Administration
[ewis Research Center
Cleveland, Ohio

Ambady Suresh

Sverdrup Technology, Inc.
NASA Lewis Research Center Group
Cleveland, Ohio

SUMDMARY

A new computer code, called PROTEUS, has been developed to solve the two-dimensional planar or
axisymmetric, Reynolds-averaged, unstcady compressible Navier-Stokes equations in strong conservation
law form. The objective in this effort has been to develop a code for acrospace propulsion applications that
is casy to use and casy to modify. Code readability, modulanty, and documentation have been emphasized.

The governing equations are written in Cartesian coordinates and transformed into generalized
nonorthogonal body-fitted coordinates. They are solved by marching in time using a fully-coupled
alternating-direction-implicit solution procedure with gencralized first- or second-order time differencing.
The boundary conditions are also treated implicitly, and may be steady or unsteady. Spatially periodic
boundary conditions are also available. All terms, including the diffusion terms, are linearized using
sccond-order Taylor series expansions. Turbulence is modeled using an algebraic eddy viscosity model.

The program contains many operating options. The governing equations may be solved for two-
dimensional planar flow, or axisymmetric flow with or without swirl. The thin-layer or Euler equations
may be solved as subsets of the Navier-Stokes equations. The energy equation may be climinated by the
assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used to damp pre-
and post-shock oscillations in supersonic flow and to minimize odd-even decoupling caused by central
spatial differencing of the convective terms in high Reynolds number flow. Several time step options are
available for convergence acceleration, including a locally variable time step and global time step cycling.
Simple Cartesian or polar grids may be generated intcrnally by the program. More complex geometnes
require an externally generated computational coordinate system.

The documentation is divided into three volumes. Volume 1 is the Analysis Description, and presents
the equations and solution procedure used in PROTEUS. It describes in detail the governing equations,
the turbulence model, the linearization of the equations and boundary conditions, the time and space dif-
ferencing formulas, the ADI solution procedure, and the artificial viscosity models. Volume 2 is the User’s
Guide, and contains information nceded to run the program. It describes the program’s general features,
the input and output, the procedure for setting up initial conditions, the computer resource requirements,
the diagnostic messages that may be generated, the job control language used to run the program, and se-
veral test cases. Volume 3, the current volume, is the Programmer’s Reference, and contains detailed in-
formation useful when modifying the program. It describes the program structure, the Fortran variables
stored in common blocks, and the details of each subprogram.

PROTEUS 2-D Programmer’s Reference Summary 3

1.0 INTRODUCTION

Much of the effort in applied computational fluid dynamics consists of modifying an existing program
for whatever geometries and flow regimes are of current interest to the researcher. Unfortunately, nearly
all of the available nonproprietary programs were started as research projects with the emphasis on dem-
onstrating the numerical algorithm rather than ease of use or ease of modification. The developers usually
intend to clean up and formally document the program, but the immediate need to extend it to new ge-
ometres and flow regimes takes precedence.

The result is often a haphazard collection of poorly written code without any consistent structure. An
extensively modified program may not even perform as expected under certain combinations of operating
options. Each new user must invest considerable time and effort in attempting to understand the underlying
structure of the program if intending do anything more than run standard test cases with it. The user’s
subsequent modifications further obscure the program structure and therefore make it even more difficult
for others to understand.

The PROTEUS two-dimensional Navier-Stokes computer program is a user-oricnted and easily-
modifiable flow analysis program for aerospace propulsion applications. Readability, modularty, and
documentation were primary objectives during its development. The entire program was specified, de-
signed, and implemented in a controlled, systematic manner. Strict programming standards were enforced
by immediate peer review of code modules; Kemighan and Plauger (1978) provided many useful ideas about
consistent programming style. Every subroutine contains an extensive comment section describing the
purpose, input variables, output vanables, and calling sequence of the subroutine. With just two clearly-
defined exceptions, the entire program is written in ANSI standard Fortran 77 to enhance portability. A
master version of the program is maintained and periodically updated with corrections, as well as extensions
of general interest (e.g., turbulence models.)

The PROTEUS program solves the unsteady, compressible, Reynolds-averaged Navier-Stokes
* equations in strong conservation law form. The governing equations are written in Cartesian coordinates
and transformed into generalized nonorthogonal body-fitted coordinates. They are solved by marching in
time using a fully-coupled alternating-direction-implicit (ADI) scheme with generalized time and space dif-
ferencing (Briley and McDonald, 1977; Beam and Warming, 1978). The current turbulence model is based
upon the algebraic eddy-viscosity model of Baldwin and Lomax (1978). All terms, including the diffusion
terms, are linearized using second-order Taylor series expansions. The boundary conditions are treated
implicitly, and may be steady or unsteady. Spatially periodic boundary conditions are also available.

The program contains many operating options. The governing equations may be solved for two-
dimensional planar flow, or axisymmetric flow with or without swirl. The thin-layer or Euler equations
may be solved as subsets of the Navier-Stokes equations. The energy equation may be eliminated by the
assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used to damp pre-
and post-shock oscillations in supersonic flow and to minimize odd-even decoupling caused by central
spatial differencing of the convective terms in high Reynolds number flow. Several time step options are
available for convergence acceleration, including a locally vanable time step and global time step cycling.
Simple grids may be generated internally by the program; more complex geometries require external grid
generation, such as that developed by Chen and Schwab (1988).

The documentation is divided into three volumes. Volume 1 is the Analysis Description, and presents
the equations and solution procedure used in PROTEUS. It describes in detail the governing equations,
the turbulence model, the linearization of the equations and boundary conditions, the time and space dif-
ferencing formulas, the ADI solution procedure, and the artificial viscosity models. Volume 2 is the User’s
Guide, and contains information needed to run the program. It describes the program’s general features,

the input and output, the procedure for setting up initial conditions, the computer resource requirements,
the diagnostic messages that may be generated, the job control language used to run the program, and se-

PROTELS 2-D Programmer’s Reference Introduction 5
PRECEDING PAGE BLANK NOT FILMED

veral test cases. Volume 3, the current volume, is the Programmer’s Reference, and contains detailed in-
formation useful when modifying the program. It describes the program structure, the Fortran variables
stored in common blocks, and the details of each subprogram.

The authors would like to acknowledge the significant contributions made by three co-workers in the
development of the PROTEUS program. Simon Chen did the original coding of the Baldwin-Lomax tur-
bulence model, and consulted in the implementation of the nonlinear coefficient artificial viscosity model.
William Kunik developed the original coding for computing the metrics of the generalized nonorthogonal
grid transformation. Frank Molls made many debugging and verification runs, particularly for spatially
periodic and unsteady flows.

6 Introduction PROTEUS 2-D Programmer’s Reference

2.0 PROGRAM STRUCTURE

2.1 FLOW CHART

In this section, a flow chart is presented showing the overall sequence of tasks performed by the two-
dimensional PROTEUS computer code. Depending on the various options used in a particular run, of
course, some of the elements in the chart may be skipped.

START

[READ & PRINT INPUT |

| READ RESTART FILES RESTART CASE? GET GRID & METRICS |

[GET METRICS | [GET INITIAL FLOWFIELD |

) SET POINT-BY—POINT [
BOUNDARY CONDITIONS

l

INITIALIZE PLOT FILES &
PRINT INITIAL FLOWFIELD

Y
[COMPUTE TIME STEP SIZE j€&—

Y

RESET BOUNDARY CONDITIONS
IF TIME-DEPENDENT

l ®

Figure 2.1 - Flow chart for the 2-D PROTELUS computer code.

PROTEUS 2-D Programmer’s Reference Program Structure 7

! O
ADD EXTRA DATA LINE AT N+1
IN SPATIALLY PERIODIC DIRECTIONS

|

| SET UP FOR FIRSTSWEEP | —>| SET UP FOR SECOND SWEEP |

COMPUTE COEFFICIENTS COMPUTE COEFFICIENTS
OF GOVERNING EQUATIONS OF GOVERNING EQUATIONS
/
[ADD BOUNDARY CONDITIONS| | ADD BOUNDARY CONDITIONS |
y
COMPUTE RESIDUALS WITHOUT [ADD ARTIFICIAL VISCOSITY
ARTIFICIAL VISCOSITY TERMS
| PERFORM MATRIX INVERSION |
LADD ARTIFICIAL VISCOSITY |

COMPUTE RESIDUALS WITH
ARTIFICIAL VISCOSITY TERMS

[PERFORM MATRIX INVERSION |

Figure 2.1 - Continued.

8 Program Structure PROTEUS 2-D Programmer’s Reference

¢ ®

UPDATE BOUNDARY VALUES
FROM FIRST SWEEP

[UPDATE AUXILIARY VARIABLES |

[UPDATE TURBULENCE PARAMETERS)|

[GENERATE OUTPUT |

NO

CONVERGED OR
LAST TIME STEP?

[GENERATE OUTPUT |

&xD)

Figure 2.1 - Concluded.

PROTEUS 2-D Programmer’s Reference Program Structure 9

2.2 SUBPROGRAM CALLING TREE

In this section, the calling sequence for the various subprograms in the PROTEUS 2-D code is shown
shown in the previous

using a tree structure. The subheadings correspond to the elements of the flow chart
section. The main program, listed in the first column, calls the subprograms in the

in turn call those in the third column, etc.
be used. The subprograms needed for a
being used. The individual subprogram

INITIALIZATION

Read and print input.

MAIN INPUT ISAMAX
Get grid and metric parameters.
MAIN GEOM PAK ROBTS
CUBIC
METS OUTPUT PRTOUT
Get initial flow field.
MAIN INITC REST METS
INIT
FTEMP
EQSTAT
TURBBL VORTEX
BLOUTI ISAMAX
ISAMIN
BILIN1
BLOUT?2 ISAMAX
ISAMIN
BLIN2

Set point-by-point boundary condition values.

MAIN BCSET
Initialize plot files and print initial or restart flow field.
MAIN PLOT
OuUTPUT PRTOUT
SET UP FOR TIME STEP
Compute time step size.
MAIN | TIMSTP [ISAMAX
Reset boundary conditions if time-dependent.
MAIN | TBC | BCSET

10 Program Structure

PROTELS 2-D Programmer’s Reference

second column, which
For any given case, of course, some of these routines will not
particular case will depend on the combination of Input parameters
s are described in detail in Section 4.0.

FILL BLOCK COEFFICIENT MATRIX

Add extra data line at N + 1 if spatially periodic in sweep direction.

MAIN EXEC [PERIOD | [
Compute coefficients of governing equations.
MAIN EXEC EQSTAT
COEFC
COEFX
COEFY
COEFE
COEFZ
Add boundary conditions.
MAIN EXEC EQSTAT
BCGEN BCQ BCMET
BCGRAD
BCUVEL BCMET
BCGRAD
BCVVEL BCMET
BCGRAD
BCWVEL BCMET
BCGRAD
BCPRES BCMET
BCGRAD
BCTEMP BCMET
BCGRAD
BCDENS BCMET
BCGRAD
BCVDIR BCMET
BCGRAD
BCF BCFLIN
BCMET
BCGRAD
BLKOUT
BCELIM SGEFA
SGESL
Compute residuals without artificial viscosity terms (sweep 1 only.)
MAIN EXEC RESID SNRM2
ISAMAX
SASUM
Add artificial viscosity.
MAIN EXEC AVISCI BLKOUT
AVISC2 BLKOUT
Compute residuals with artificial viscosity terms (sweep 1 only.)
MAIN EXEC RESID SNRM2
ISAMAX
SASUM

PROTEUS 2-D Programmer’s Reference Program Structure 11

SOLVE DIFFERENCE EQUATIONS

Perform matrix inversion.

MAIN EXEC ADI BLKOUT
BLK3P
BLK3 FILTER ISAMAX
BLKOUT
BILLK4P
BILK4 FII.TER ISAMAX
BILKOUT
BLKS5P
BLKS5 FILTER ISAMAX
BI.KOUT
UPDATE
Update boundary values from first sweep.
MAIN EXEC BVUP EQSTAT
BCGEN BCQ BCMLET
BCGRAD
BCUVEIL BCMET
BCGRAD
BCVVEL BCMET
BCGRAD
BCWVEL BCMET
BCGRAD
BCPRES BCMET
BCGRAD
BCTI:MP BCMET
BCGRAD
BCDENS BCMET
BCGRAD
BCVDIR BCMET
BCGRAD
BCF BCFILIN
BCMET
BCGRAD
BLKOUT
SGEFA
SGESL

12 Program Structure

PROTELS 2-D Programmer’s Reference

FINISH TIME STEP AND CHECK RESULTS

Update auxiliary varables.

MAIN EQSTAT
FTEMP
Update turbulence parameters.
MAIN TURBBL VORTEX
BLOUT! ISAMAX
ISAMIN
BLINI
BLOUT2 ISAMAX
ISAMIN
BLIN2
Check for convergence.
MAIN [conv ISAMAX |
GENERATE OUTPUT
Print flow field output.
MAIN OUTPUT I PRTOUT l
Write plot and restart files.
MAIN PLOT
REST

Print convergence history.

MAIN | PRTHST

2.3 PROGRAMMING CONVENTIONS AND NOTES

2.3.1 Computer & Language

At NASA Lewis Research Center, PROTEUS is normally run on a Cray X-MP computer. With just
two known exceptions, it is written entirely in ANSI standard Fortran 77 as described in the CFT77 Ref-
erence Manual (Cray Research, Inc., 1988a). The first exception is the use of namelist input. With namelist
input, it’s relatively easy to create and/or modify input files, to read the resulting files, and to program de-
fault values. Since most Fortran compilers allow namelist input, its use is not considered a serious problem.
The second exception is the use of *CALL statements to include *COMDECKS, which contain the labeled
common blocks, in most of the subprograms. This is a Cray UPDATE feature, and therefore the source
code must be processed by UPDATE to create a file that can be compiled.! UPDATE is described in the
UPDATE Reference Manual (Cray Research, Inc., 1988c). Since using the *CALL statements results in
cleaner, more readable code, and since many computcr systems have an analogous feature, the *CALL
statements were left in the program.

Six library subroutines are called by PROTEUS. ISAMAX, SASUM, and SNRM2 are Cray Basic
Linear Algebra Subprograms (BLAS). ISAMIN is a Cray extension to the BLAS routines. SGEFA and
SGESL are Cray versions of LINPACK routines. All of these routines are described in detail in Section
4.0, and in the Programmer’s Library Reference Manual (Cray Research, Inc., 1988b).

1 See the example in Section 8.1 of Volume 2.

PROTEUS 2-D Programmer’s Reference Program Structure 13

The PROTELS code is highly vectorized for optimal performance on the Cray. The coefficient gener-
ation is vectorized in the ADI sweep direction. Since the coefficient matrix is block tridiagonal, the
equations are solved using the Thomas algorithm. This algorithm is recursive, and therefore cannot be
vectonized in the sweep direction. However, by stoning the coefficients and source terms in both coordinate
directions, the algorithm can be vectorized in the non-sweep direction. This increases the storage required
by the program, but greatly decreases the CPU time required for the ADI solution.

2.3.2 Fortran Variables

Variable Names

In developing PROTEUS, code readability has becn cmphasized. We have therefore attempted to
choose Fortran variable names that are meaningful. In gencral, they either match the notation used in the
analysis description in Volume 1, or are in some way descriptive of the parameter being represented. For
example, RHO, U, V, W, and ET are the Fortran variables representing the density p, the velocities «, v,
and w, and the total energy per unit volume Er

REAL and INTEGER Variables

In general, the type (REAL or INTEGER) of the Fortran variables follows standard Fortran convention
(1e., those starting with I, J, K, L, M, or N are INTEGER, and the remainder are REAL.) There are,
however, several variables that would normally be INTEGER but are explicitly declared to be REAL.
These are noted in the input description in Section 3.0 of Volume 2, and 1n the description of common
block variables in Section 3.0 of this volume.

Array Dimensions

Most Fortran arrays are dimensioned using PARAMETERs. The PARAMETERs are set in
COMDECK PARAMSI. This allows the code to be redimensioned simply be changing the appropriate
PARAMETERS, and then recompiling the entire program. The PARAMETERS are described in Section
6.2 of Volume 2.

Initialization

All of the input Fortran variables, plus some additional variables, are initialized in BLOCK DATA.
Most of the input variables are initialized to their default values directly, but some are initialized to values
that trigger the setting of default values in subroutine INPUT. On the Cray X-MP at NASA Lewis, all
uninitialized variables have the value zero. There are no known instances in the PROTEUS code, however,
in which a variable is used before it is assigned a value,

Nondimensionalization

In general, Fortran variables representing physical quantities, such as RHO, U, etc., are nondimensional.
Two types of nondimensionalizing factors are used - reference conditions and normalizing conditions. The
factors used to nondimensionalize the governing equations in Section 2.0 of Volume 1 are called normalizing
conditions. These normalizing conditions are defined by six basic reference conditions, for length, velocity,
temperature, density, viscosity, and thermal conductivity, which are specified by the user. The normalizing
conditions used in PROTEUS are listed in Table 3-1 of Volume 2.

Note that for some variables, like pressure, the normalizing condition is dictated by the form of the
governing cquations once the six basic reference conditions are chosen. Unfortunately, some of thesc may
not be physically meaningful or convenient for use in setting up input conditions. Therefore, some addi-
tional reference conditions are defined from the six user-supplied ones. The reference conditions are listed
in Table 3-2 of Volume 2.

Throughout most of the PROTEUS code, physical variables are nondimensionalized by the normalizing
conditions. For input and output, however, vaniables are nondimensionalized by the reference conditions
because they are usually more physically meaningful for the user. The Fortran variables representing the
reference conditions themselves are, of course, dimensional.

14 Program Structure PROTEUS 2-D Programmer’s Reference

One-Dimensional Addressing of Two-Dimensional Arrays

In the solution algorithm used in PROTELUS, there are several instances in which the same steps must
be followed in both ADI sweep directions. An example is the computation, in the COEFC, COEFX,
COEFY, COEFZ, and COEFL routines, of the submatrices in the block tridiagonal coefficient matrix.
These computations involve two-dimensional arrays such as RHO, U, etc. In these arrays, the two sub-
scripts represent, in order, the indices in the computational & and 5 directions. For the first ADI sweep,
values at various ¢ indices are needed at a fixed » index. For the second ADI sweep, the reverse is true.
In order to use the same coding for both sweeps, a scheme for one-dimensional addressing of a two-
dimensional array has been used.?

In Fortran, multi-dimensional arrays are actually stored in memory as a onc-dimensional sequence of
values, with the first subscript incremented over its range first, then the second subscript, etc. We take ad-
vantage of this in PROTEUS. Asa first step, the two-dimensional array is EQUIVALENCE'd to a one-
dimensional array of the same total length. The one-dimensional array name is derived from the
two-dimensional array name by adding a "1”. Thus, letting F represent a typical two-dimensional array,

DIMENSION F(N1P,N2P),FL(NTOTP)
EQUIVALENCE (F(1,1),F1(1))

where N1P and N2P are PARAMETERs specifying the dimension size in the & and » directions, and
NTOTP is a PARAMETER equal to N1P x N2P. Next, we define a “step factor”, which depends on the
ADI sweep, and a “base index” which depends on the index in the non-sweep direction. For the first ADI
sweep,

ISTEP =1

DO 1000 I2 = 2,NPT2-1
IV = I2

IBASE = 1 + (I2-1)%N1P

1000 CONTINUE

And for the second ADI sweep,

ISTEP = N1P

DO 2000 I1 = 2,NPT1-1
Iv = Il

IBASE = I1

2000 CONTINUE

In both of the above examples, the loop is in the non-sweep direction and IV thercfore represents the index
in the non-sweep direction, Nested inside this loop is a loop in the sweep direction. In this inner loop,
we can compute the equivalent one-dimensional address for a location in a two-dimensional array from the
step factor, the base index, and the index in the sweep direction. Thus, for either ADI sweep, the inner loop
looks like

DO 100 I = 2,NPTS-1

IIM1 = IBASE + ISTEPX(I-2)
II = IBASE + ISTEPX(I-1)
IIP1 = IBASE + ISTEPXI

2 An alternative would be to switch the order of the two subscripts in all the arrays after each sweep. Since these
arrays are used in many other areas of the code, this idea was discarded as being unnecessarily confusing. It should
be noted, however, that the first two subscripts in the A, B, C, and S arrays, which represent the coefficient sub-
matrices and source term subvector, do switch between sweeps. For these arrays, the first subscript is the index in
the non-sweep direction (i.e., the » direction for the first sweep and the ¢ direction for the second sweep), and the
second is the index in the sweep direction (i.e., ¢ for the first sweep and for the second sweep.)

PROTELS 2-D Programmer’s Reference Program Structure 15

100 CONTINUE

where [represents the index in the sweep direction. With this coding, for the first sweep

F1(IIM1) = F(I1-1,I2)

FICII) = FC(I1 ,I2)

F1C(IIP1} = F(I1+1,1I2)
And for the second sweep,

FI1(IIM1) = F(I1,I2-1)

FI1C(IT) = F(I1,I2)

F1C(IIP1) = F(I1,I2+1)

Two-Level Storage

With the Beam-Warming time differencing scheme used in PROTEUS, the dependent variables RHO,
U, V, W, and ET must be stored at two time levels. For conveni;nce, T is also stored at two time levels.

time levels for F and FL are listed in the following table for the different stages of the solution procedure.
Recall that * represents the intermediate time level after the first ADI sweep.

STAGE IN TIME STEP TIME LEVEL TIME LEVEL
FROM LEVEL n TO n + 1 FOR F FOR FL
From start to end of sweep 1 n n—1
From end of sweep | to end of sweep 2 *
From end of sweep 2 to update in EXEC n n+1
From update in EXEC to start of next step n+1 n

DUMMY Array

For convenience, a two-dimensional array called DUMMY is stored in common block DUMMY1 and
used as a temporary storage location in several areas of the code. This array is DIMENSIONed NIP by
N2P, the same as the flow variables, metrics, etc. DUMMY is used internally in subroutines CONV and
RESID. 1t is also defined in subroutine BCFLIN for use in subroutine BCF, and in subroutines BLIN?2
and BLOUT?2 for use in TURBBL. And finally, it is defined in subroutine OUTPUT and passed as an
argument into subroutine PRTOUT. Details on its use are presented in the subroutine descriptions in

Section 4.0,

16 Program Structure

PROTEUS 2-D Programmer’s Reference

3.0 COMMON BLOCKS

Transfer of data between routines in PROTELUS is primarily accomplished through the use of labeled
common blocks. Each common block contains variables dealing with a particular aspect of the analysis,
and is stored in a separate Cray COMDECK (Cray Research, Inc., 1988¢c). The common block names are
the same as the COMDECK names. These names also correspond to the names of the input namelists.
All the variables in namelist BC are stored in common block BCI, etc. The Fortran variables in each
common block are stored in alphabetical order.

3.1 COMMON BLOCK SUMMARY

Block Name Description

BCl Boundary condition parameters.

DUMMY] Scratch array.

FLOWI1 Variables dealing with fluid properties and the flow being com-
puted.

GMTRY1 Parameters defining the geometric configuration.

IC1 Variables needed for setting up initial conditions.

101 Parameters dealing with program input/output requirements.

METRICI Metrics of the nonorthogonal grid transformation, plus the
Cartesian coordinates of the grid points.

NUM! Parameters associated with the numerical method.

RSTRTI1 Parameters dealing with the restart option.

TIME]L Parameters dealing with the time step selection and convergence
determination.

TITLE! Descriptive title for case being run.

TURBI Turbulence parameters.

3.2 COMMON VARIABLES LISTED ALPHABETICALLY

In this section all the PROTEUS Fortran variables stored in common blocks are defined, listed alpha-
betically by variable name. Those marked with an asterisk are input variables. More details on these var-
iables may be found in Section 3.1 of Volume 2. The common block each variable is stored in is given in
parentheses at the end of each definition. For subscripted variables, the subscripts are defined along with
the variable, except for the subscripts I1 and 12, which are the indices i and j in the ¢ and » directions, re-
spectively, and run from 1 to A, and N,.

This list also includes the Cray PARAMETERS used as array dimensions. These are not actually stored
in a common block, but are stored in the Cray COMDECK PARAMSI. More details may be found in
Section 6.2 of Volume 2.

Unless otherwise noted, all variables representing physical quantities are nondimensional. The
nondimensionalizing procedure is described in Section 3.1.1 of Volume 2. The type (real or integer) of the
variables follows standard Fortran convention, unless stated otherwise. (l.e., those starting with I, J, K,
L, M, or N are integer, and the remainder are real.)

PROTEUS 2-D Programmer’s Reference Common Block Summary 17

Fortran
Vanable

A(IV,1J K)

ALPHA

* ALPHAI

* ALPHA2

* APLUS

B(IV,LJ K)

C(IV,1J.K)

* CAVS2E(D

+ CAVS2I(])

* CAVS4E(D

Symbol

X

&y

B

@ or k,

&

£ or k,

18 Variables Listed Alphabetically

Definition

Subdiagonal submatrix of coefficients at gnid point 1 in the
block tridiagonal coefficient matrix. 1 is the grid index in the
sweep direction, running from 1to N. IV is the grid index in
the “vectorized” direction (ie., the non-sweep direction in
which the "BLK” routines are vectorized), and runs from 2 to
N, — 1. The subscript J =1 to N.,,, corresponding to the N,
coupled governing equations, and K = | to N,,, corresponding
to the &, dependent variables. (NUMD

Difference centering parameter for first derivatives in the ADI
sweep direction. (NUMI) '

Difference centering parameter for ¢ direction first derivatives.
ALPHAL1 = 0.0, 0.5, or 1.0 corresponding to forward, central,
and backward differences, respectively. (NUM)

Difference centering parameter for n direction first derivatives.
ALPHA2=10.0,0.5,0r 1.0 corresponding to forward, central,
and backward differences, respectively. (NUMD

Van Driest damping constant in the inner and outer regions
of the Baldwin-Lomax turbulence model. (TURBI)

Diagonal submatrix of coefficients at gnd point I in the block
tndiagonal cocfficient matrix. I is the grid index in the sweep
direction, running from 1 to N. IV is the grid index in the
“vectorized” direction (i.e., the non-sweep direction in which
the "BLK” routines are vectorized), and runs from 2 to
N, — 1. The subscript J =1 to / e Corresponding to the N,
coupled governing equations, and K = | to N,,, corresponding
to the N,, dependent variables. (NUMD)

Superdiagonal submatrix of coefficients at grid point I in the
block tridiagonal coefficient matrix. 1 is the grid index in the
sweep direction, running from 1to N. IV is the grid index in
the “vectorized” direction (i.c., the non-sweep direction in
which the “"BLK” routines are vectorized), and runs from 2 to
¥, — 1. The subscript] =1 to N,,, corresponding to the N,
coupled governing equations, and K = | to V,,, corresponding
to the .V,, dependent variables. (NUMD)

Second-order explicit artificial viscosity coefficient in constant
cocefficient model, or user-specified constant in nonlinear co-
efficient model. The subscript [= 1 to N,,. corresponding to
the V,; coupled governing equations. (NUMD)

Second-order implicit artificial viscosity coefficient in constant
coefficient model. The subscript I =1 to N,,, corresponding
to the .V, coupled governing equations. (NUMD)

Fourth-order explicit artificial viscosity coefficient in constant
coeflicient model, or user-specified constant in nonlinear co-
efficient model. The subscript 1 = 1 to N,,, corresponding to
the .V,; coupled governing equations. (NUMD

PROTELS 2-D Programmer’s Manual

CB

CCLAU

cCcp

CCP1-4

CFL(I)

CFLMAX
CFLMIN

CHGAVG(])

CHGMAX(L])

CHGI

CHG?2

CKLEB

CK1-2

CMUIL-2

CNA

AQavg

A

C

ul

Qmax

-C

i

2

Constant used in the formula for the Klebanoff intermittency
factor Fy,, in the outer region of the Baldwin-Lomax turbu-
lence model, and in the inner region of the Spalding-
Kleinstein turbulence model. (TURBI)

Clauser constant used in the outer region of the Baldwin-
Lomax turbulence model. (TURBI)

Constant used in the outer region of the Baldwin-Lomax tur-
bulence model. (TURBI)

Constants in empirical formula for specific heat as a function
of temperature. (FLOWI)

The ratio At/Ar_, where At is the actual time step used in the
implicit calculation and At is the allowable time step based
on the Courant-Friedrichs-Lewy (CFL) criterion for explicit
methods. I is the time step sequence number, and runs from
1 to NTSEQ. (TIMED)

Maximum allowed value of the CFL number. (TIMEI)
Minimum allowed value of the CFL number. (TIMEI)

Maximum change in absolute value of the dependent vari-
ables, averaged over the last NITAVG time steps.® The sub-
script 1=1 to N,, corresponding to the N,, dependent
variables. (TIME1)

Maximum change in absolute value of the dependent variables
over a single time step.? The subscript 1=1 to N,,, corre-
sponding to the N, dependent varables, and J=1 to
NITAVG, the number of time steps used in the moving av-
erage option for determining convergence. (TIMED)

Minimum change, in absolute value, that is allowed in any
dependent variable before increasing the time step.? (TIMEI)

Maximum change, in absolute value, that is allowed in any
dependent variable before decreasing the time step.? (TIMEL)

Constant used in the formula for the Klebanoff intermittency
factor Fy,, in the outer region of the Baldwin-Lomax turbu-
lence model. (TURBI)

Constants in empirical formula for thermal conductivity coef-
ficient as a function of temperature. (FLOW1)

Constants in empirical formula for laminar viscosity coeffi-
cient as a function of temperature. (FLOWI)

Exponent in the formula used to average the two outer region
u, profiles that result when both boundaries in a coordinate
direction are solid surfaces. (TURBI)

3 For the cnergy equation, the change in Ey is divided by Er = p,RT|(y, — 1) + 132, so that it is the same order
of magnitude as the other conservation variables.

PROTELS 2-D Programmer’s Manual Variables Listed Alphabetically 19

* CNL n
CP(ILLDY c,
CV(ILLIY c,

* VK K

* CWK Coi
DET. Al or Ay
DIETA Ay
DPDITD aplofs,
DPDRIO() cpldp
DPDRU(D apld(pw)
DPDRV(I) 3pfe(pv)
DPDRW(I) apld(pw)

* DI At
DTAU(IL.12) Ar
DTDET(D OT(OE,
DTDRHO(D 3T|dp
DTDRU((D oT/d(pu)

20 Variables Listed Alphabetically

Exponent in the Launder-Priddin modified mixing length
formula for the inner region of the Baldwin-Lomax turbulence
model. (TURBI)

Specific heat at constant pressure at time level 7. (FLOWI)
Specific heat at constant volume at time level . (FLOWD

Von Karman mixing length constant used in the inner region
of the Baldwin-T omax and Spalding-Kleinstein turbulence
models. (TURBI)

Constant used in the formula for Fooie 10 the outer region of
the Baldwin-I.omax turbulence model. (TURBI

Computational grid spacing in the ADI sweep direction.
(NUMD

Computational grid spacing in the y direction. (NUMD)

The derivative of p with respect to [, stored as a one-
dimensional array in the sweep direction. The subscript |
therefore runs from 1 to N. (FLOWI)

The derivative of p with respect to p, stored as a one-
dimensional array in the sweep direction. ‘The subscript 1
therefore runs from 1 to N. (FLOWI)

The derivative of p with respect to pu, stored as a one-
dimensional array in the sweep direction. The subscript 1
therefore runs from 1 to A. (FLOWY)
The denvative of p with respect to pv, stored as a one-
dimensional array in the sweep direction. The subscript 1
therefore runs from 1 to A, (FLOWI)

The derivative of p with respect to pw, stored as a one-
dimensional array in the sweep direction. The subscript |
therefore runs from 1 to N. (FI.LOWI)

The time step size, when specified dircctly as input. I is the
time step sequence number, and runs from 1 to NTSEQ.
(TIMED

Computational time step size. (TIMET)

The derivative of T with respect to E;, stored as a one-
dimensional array in the sweep direction. The subscript [
therefore runs from 1 to A. (FLOWI)

The denvative of 7 with respect to p, stored as a one-
dimensional array in the sweep direction. The subscript 1
therefore runs from 1 to N. (FLOW1)

The derivative of T with respect to pu, stored as a one-

dimensional array in the sweep direction. The subscript |
therefore runs from 1 to A (FLOWI)

PROTELS 2-D Programmer’s Manual

DTDRV(]) aT/3(pv)
DTDRW(I) 3T|3(pw)
+ DTFI
+ DTI2
+ DTMAX
+ DTMIN

DUMMY(11,12)

DXI A¢

* EPS(I) e
ER e
ET(11,12) E;
ETAT(11,12) "
ETAX(I1,12) N,
ETAY(I1,12) n, orn,
ETI(11,12) Er

+ FBCI(2,LJ)

* TBCXI11J)

+ GAMR v

PROTEUS 2-D Programmer’s Manual

The derivative of 7 with respect to pv, stored as a one-
dimensional array in the sweep direction. The subscript |
therefore runs from 1 to V. (FLOW1)

The derivative of 7 with respect to pw, stored as a one-
dimensional array in the sweep direction. The subscript 1
therefore runs from 1 to N. (FLOW1)

Factor by which the time step is multiplied if the solution
changes too slowly. (TIME1)

Factor by which the time step is divided if the solution
changes too quickly. (TIMEL)

Maximum value that At is allowed to reach, or the maximum
Az used in the time step cycling procedure. (TIMEL)

Minimum value that At is allowed to reach, or the minimum
At used in the time step cycling procedure. (TTMED)

Dummy array used for temporary storage in several subrou-
tines. (DUMMY)

Computational grid spacing in the ¢ direction. {(NUMI)

Convergence level to be reached. The subscript [= 1 to N,
corresponding to the N, dependent variables. (TIME1D)

Dimensional reference energy, p,u2. (FLOWI)
Total energy at time level . (FLOWI)

The derivative of the computational coordinate » with respect
to untransformed time ¢. (METRICI)

The derivative of the computational coordinate n with respect
to the Cartesian coordinate x. (METRICI)

The derivative of the computational coordinate » with respect
to the Cartesian coordinate y or cylindrical coordinate r.
(METRICI)

Total energy at previous or intermediate time level. (FLOWYI)

Point-by-point values used for steady boundary conditions on
the & = 0 and ¢ = 1 surfaces. These are either set in the input,
if a point-by-point distribution is being specified by the user,
or by the program itself. I runs from 1 to N, corresponding
to the N, conditions nceded, and J =1 or 2, corresponding
10 the ¢ = 0 and & = 1 boundaries, respectively. (BCI)

Point-by-point values used for steady boundary conditions on
the 1 = 0 and » = 1 surfaces. These are either set in the input,
if a point-by-point distribution is being specified by the user,
or by the program itself. Iruns from 1to N, corresponding
to the N, conditions needed, and J =1 or 2, corresponding
to the » = 0 and » = 1 boundaries, respectively. (BCI)

Reference ratio of specific heats, ¢, /c, . (FLOWI)

Variables Listed Alphabetically 21

GBCI(L))

GBC2(LT)

GC 2.

GTBCHK,LD)

GTBC2(K,LJ)

HSTAG Ay
HSTAGR hr,

IAV2E

IAV2I]

IAV4E

IAXI

22 Variables Listed Alphabetically

Values used for steady boundary conditions on the ¢ = 0 and
¢ = | boundaries, when specified for the entire surface. I runs
from 1 to N, corresponding to the N, conditions needed, and
J =1 or 2, corresponding to the ¢ =6 and ¢ = 1 boundaries,
respectively. (BCI)

Values used for steady boundary conditions on the n =0 and
n = | boundaries, when specified for the entire surface. I runs
from 1 to N, corresponding to the N, conditions needed, and
J=1or 2, corresponding to the n = 0 and n = | boundaries,

respectively. (BCI)

Dimensional proportionality factor in Newton’s second law,
either 32.174 1b_-ft/lb-sec?, or 1.0 kg-m/N-sec?. (FLOWI)

A vanable used to specify the values for unsteady and time-
periodic boundary conditions on the ¢ = 0 and ¢ = | bound-
aries. I runs from | to N, corresponding to the N,
conditions needed, and J = 1 or 2, corresponding to the ¢ = ()
and ¢ =1 boundaries, respectively. For general unsteady
boundary conditions, K = 1 to NTBC, corresponding to the
time levels in the array NTBCA, and GTBC]1 specifies the
boundary condition value directly. For time-periodic bound-
ary conditions, K = | to 4, and GTBC1 specifies the four co-
efficients in the equation used to determine the boundary
condition value. (BCI)

A variable used to specify the values for unsteady and time-
periodic boundary conditions on the n = 0 and » = 1 bound-
aries. [runs from 1 to N,, comesponding to the N,
conditions needed, and J = 1 or 2, corresponding to the n= ¢
and n =1 boundaries, respectively. For general unsteady
boundary conditions, K = 1 to NTBC, corresponding to the
time levels in the array NTBCA, and GTBC2 specifies the
boundary condition value directly. For time-periodic bound-
ary conditions, K = | to 4, and GTBC2 specifies the four co-
efficients in the equation used to determine the boundary
condition value. (BCl)

Stagnation enthalpy used with constant stagnation enthalpy
option. (FLLOWI)

Dimensional stagnation enthalpy used with constant stag-
nation enthalpy option. (FLOW1)

Flag for second-order explicit artificial viscosity; 0 for none, 1
for constant coefficient model, 2 for nonlinear coefficient
model. (NUMI)

Flag for sccond-order implicit artificial viscosity; 0 for none,
I for constant cocfficient model. (NUMI1)

Flag for fourth-order explicit artificial viscosity; 0 for none, 1
for constant coefficient model, 2 for nonlinear coefficient
model. (NUMI)

Flag for two-dimensional planar or axisymmetric flow; 0 for
two-dimensional planar, 1 for axisymmetric. (GMTRY]1)

PROTELS 2-D Programmer’s Manual

IBASE

IBCELM(1,])

IBC1(12,1.])

IBC2(11,1.])

IBVUP(I)

ICHECK

ICONV

ICTEST

ICVARS

IDEBUG(])

IDTAU

IDTMOD

IEULER

PROTELUS 2-D Programmer’s Manual

Base index used with ISTEP to compute one-dimensional
index for two-dimensional array. Then, for example, for any
sweep U(I1,12) = UI(IBASE + ISTEP*(I — 1)) where | 1s the
grid index in the sweep direction. (NUMI)

Flags for elimination of off-diagonal sub-matnces resulting
from gradient or extrapolation boundary conditions: 0 if
elimination is not necessary, 1 if it is. The subscript =1 or
2 corresponding to the sweep direction, and J = 1 or 2 corre-
sponding to the lower or upper boundary in that direction.
(BCD)

Flags specifying, point-by-point, the type of steady boundary
conditions used on the & =0 and ¢ = 1 surfaces. These are
either set in the input, if a point-by-point distribution is
specified by the user, or by the program itself. I runs from 1
to N,,, corresponding to the N, conditions needed, and J =1
or 2, corresponding to the £ =0 and ¢ =1 boundaries, re-
spectively. (BCl)

Flags specifying, point-by-point, the type of steady boundary
conditions used on the y =0 and » =1 surfaces. These are
either set in the input, if a point-by-point distribution is
specified by the user, or by the program itself. 1 runs from 1
to N,,, corresponding to the N, conditions needed, and J =1
or 2, corresponding to the =0 and » = 1 boundaries, re-
spectively. (BCl)

Flags for updating boundary values from the first sweep after
the last sweep: 0 if updating is not necessary, L if it is. Up-
dating is required when gradient or extrapolation boundary
conditions are used. The subscript I = 1 or 2, corresponding
to the lower or upper boundary in the first sweep direction.
(BCI)

Results are checked for convergence cvery ICHECK'th time
level. (TIMED)

Convergence flag; 0 if not converged, 1 if converged.
(TIMEI)

Flag for convergence criteria to be used. (TIMEL)

Parameter specifying which variables arc being supplied as
initial conditions by subroutine INIT. (FLOWI)

A 20-clement array of flags specifying various debug options.
(101)

Flag for time step selection method. (TIMEI)

The time step size is modified every IDTMOD’th time step.
(TIMED)

Flag for Euler calculation option; 0 for a full time-averaged

Navier-Stokes calculation, 1 for an FEuler calculation.
(FLOWI)

Variables Listed Alphabetically 23

IGAM

IGINT(])

IHSTAG

TILAMYV

ILDAMP

INEG

INNER

[PACK(I)

IPLOT

IPLT

IPLTA(D)

IPRT

IPRTA(D)

IPRTI

IPRT2

IPRTIA(D)

24 Variables Listed Alphabetically

Flag set by method used to select GAMR; 0 if GAMR is de-
faulted (and hence ¢, and c, are functions of temperature), 1
if GAMR is specified by user (and hence ¢, and ¢, are con-
stants). (FLOW1)

Flags for grid interpolation requirement; 0 if interpolation is
not needed, 1 if interpolation is needed. The subscript I = 1
or 2, corresponding to the ¢ and # directions, respectively.
(GMTRY])

Flag for constant stagnation enthalpy option; 0 to solve the
energy cquation, | to eliminate the energy equation by as-
suming constant stagnation enthalpy. (FLOWI)

Flag for computation of laminar viscosity and thermal
conductivity; 0 for constant values, 1 for functions of local
temperature. (FLOWI)

Flag for the Launder-Priddin modified mixing length formula
in the inner region of the Baldwin-Lomax turbulence model.
(TURBI)

Flag indicating non-positive values of pressure and/or tem-
perature: 0 for no non-positive values, I for some. (FLOWD)

Flag for type of inner region turbulence model. (TURBI)

Flags for grid packing option; 0 for no packing, | to pack
points as specified by the input array S$Q. The subscript
I=1 or 2, corresponding to the ¢ and # directions, respec-
tively. (NUMI)

Flag controlling the creation of an auxiliary file, usually called
a “plot file”, used for later post-processing. (101)

Results are written into the plot file every IPLT time levels.
(101

Time levels at which results are written into the plot file. The
subscript I =1 to 101, the maximum number of time levels
that may be written. (I0Q1)

Results are printed every IPRT time levels. (I01)
Time levels at which results are printed. The subscript 1 =1
to 101, the maximum number of time levels that may be

prnted. (I01)

Results are printed at every IPRT1'th mesh point in the ¢
direction. (IO1)

Results are printed at every IPRT2'th mesh point in the n
direction. (I01)

¢ indices at which results are printed. The subscript I =1 to

a maximum of N1, the number of grid points in the ¢ direc-
tion. (IO1)

PROTELS 2-D Programmer’s Manual

*

IPRT2A(D)

IREST

ISTEP

ISWELP

ISWIRL

I'r n

ITBEG

ITDBC

ITEND

ITETA

[THIN(T)

ITSEQ

ITURB

ITXI

[UNTTS

v i

IVOUT(I)

PROTELS 2-D Programmer’s Manual

n indices at which results are printed. The subscript =1 to
a maximum of N2, the number of gnd points in the y direc-
tion. (101)

Flag controlling the reading and writing of auxiliary files used
for restarting the calculation in a separate run. (RSTRTL)

Multiplication factor used with IBASE to compute one-
dimensional index for two-dimenstonal array. (NUMY)

Flag specifying ADI sweep direction; 1 for ¢ direction and 2
for y direction. {(NUMI)

Flag for swirl in axisymmetric flow; 0 for no swirl, 1 for swirl.
(FLOWI)

Current time step number, or known time level. Tune step
number 7 updates the solution from time level 7 to 2+ L.
(TIMETD) '

The time time step number, or known time level #, at the
beginning of a run. For a non-restart case, TIBEG - 1
(TIMED

Flag for time-dependent boundary conditions; 01f all bound-
ary conditions are steady, 1 if any general unsteady boundary
conditions arc used, 2 if only steady and time-periodic
boundary conditions are used. (BCI)

The final time step number. (TTME]D)

Flag for computing turbulent viscosity on constant » lines.
(TURBI)

Flags for thin-layer option: 0 to include 2nd. denvative
viscous terms, 1 to eliminate them. The subseript [=1 or 2,
corresponding to the ¢ and y directions, respectively.
(FLOWI)

Current time step sequence number. (TIMEL)

Flag for turbulent flow option; 0 for laminar tlow, 1 for tur-
bulent flow using the Baldwin-lLomax algebraic turbulence
model. ('URBI)

Flag for computing turbulent viscosity on constant & lines.

(TURBI)

Flag for type of units used to specify reference conditions;
0 for English units, 1 for SI umts. (101)

Gnd point index in the “vectorized” direction (i.c., the non-
sweep direction in which the "BLLK” routines arc vectorized).
Therefore, IV = for the first sweep and i for the second
sweep. (NUMI)

A S0-element array specifying which variables are to be
printed. (101)

Variables Listed Alphabetically 25

IWALLI(I)

IWALL2(I)

11
12

JBCI(L))

JBC2(L))

JI(11,12)

JTBCI(LJ)

JTBC2(LJ)

KBCPER(I)

KBCIl(J)

KBC2(J)

KT(I1,12)

Jtorr/!?

26 Variables Listed Alphabetically

Flags indicating type of surfaces in the ¢ direction; O for a free
boundary, | for a solid wall. The subscript I = | or 2, corre-
sponding to the ¢=0 and ¢=1 surfaces, respectively.
(TURBY)

Flags indicating type of surfaces in the y direction; 0 for a free
boundary, 1 for a solid wall. The subscript I = | or 2, corre-
sponding to the n=0 and =1 surfaces, respectively.
(TURBI)

Gnd point index in the ¢ direction. (NUMI)
Grid point index in the y direction. (NUM1)

Flags specifying the type of steady boundary conditions used
on the ¢ =0 and & = | surfaces, when specified for the entire
surface. I runs from 1 to N,,, corresponding to the ¥, con-

ditions needed, and J = 1 or 2, corresponding to the ¢ = 0 and
¢ = 1 boundaries, respectively. (BCI)

Flags specifying the type of steady boundary conditions used
on the n =0 and 5 = | surfaces, when specified for the entire
surface. I runs from 1 to N, corresponding to the N,, con-
ditions needed, and J = 1 or 2, corresponding to the n = 0 and
n = | boundaries, respectively. (BC1)

Normally the inverse Jacobian of the non-orthogonal grid
transformation. For the COEF routines in axisymmetric
flow, it is temporarily redefined as the product of the local
radius and the inverse Jacobian. This is a type REAL van-
able. (METRIC1)

A vanable specifying the type of time dependency for the
boundary conditions on the ¢ =0 and ¢ = 1 boundaries. 1
runs from | to N,, comesponding to the N, conditions

needed, and J = | or 2, corresponding to the £ =0 and ¢ = |
boundaries, respectively. (BCI)

A varnable specifying the type of time dependency for the
boundary conditions on the # =0 and 5 = | boundaries. |
runs from | to N,, corresponding to the N,, conditions
needed, and J = 1 or 2, corresponding to the y =0 and = |
boundaries, respectively. (BC1)

Flags for spatially periodic boundary conditions: 0 for non-
periodic, 1 for periodic. The subscript 1 =1 or 2, corre-
sponding to the ¢ and » directions, respectively. (BCI)

Flags for type of boundaries in the ¢ direction. The subscript
J =1 or 2, corresponding to the ¢ = 0 and ¢ = | boundaries,
respectively. (BCI)

Flags for type of boundaries in the » direction. The subscript
J =1 or 2, corresponding to the » = 0 and » = 1 boundaries,
respectively. (BCI)

Effective thermal conductivity coefficient at time level n. This
1s a type REAL variable. (FLOW1)

PROTELS 2-D Programmer’s Manual

+ KTR k
LA(IL,12) J
+ LR L

LRMAX(LJ,K)

LWAKEL
LWAKE2

+ MACHR M,
METT(IV,I) £ or n,
METX(IV,) £ orn,
METY(IV,I) g, orn,
MU(I1,12) u

+ MUR “,
MUT(IL,12) “,

PROTELUS 2-D Programmer’s Manual

Dimensional reference thermal conductivity coefficient. This
is a type REAL vanable. (FLOWI)

Effective second coefficient of viscosity at time level n (usually
assumed equal to — 2u/3.) This is a type REAL variable.
(FLOWI)

Dimensional reference length. This is a type REAL variable.
(FLLOWI)

The grid indices corresponding to the location of the maxi-
mum absolute value of the residual. The subscript I=1 or
2, corresponding to the ¢ and y directions, respectively, J = 1
to N,,, corresponding to the N, coupled governing equations,
and K=1 or 2, corresponding to the residual computed
without and with the artificial viscosity terms. (TIMEL)

Grid point index in the ¢ direction used as the ongin for
computing length scales for free turbulent flows. (TURBI)

Grid point index in the » direction used as the ongin for
computing length scales for free turbulent flows. (TURBI)

Reference Mach number, /(y,R 7). This is a type REAL
variable. (F1.OW1)

The derivative of the computational coordinate in the ADI
sweep direction with respect to untransformed time ¢. 1 is the
grid index in the sweep direction, running from 1 to N. 1V is
the grid index in the “vectonzed” direction (i.e., the non-sweep
direction in which the “BLK” routines are vectorized), and
runs from 2 to N, — 1. This is a type REAL variable.
(METRICI)

The denvative of the computational coordinate in the ADI
sweep direction with respect to the Cartesian coordinate x. |
is the grid index in the sweep direction, running from 1 to N.
IV is the grid index in the “vectorized” direction (i.e., the
non-sweep direction in which the “BLK” routines are
vectorized), and runs from 2to N, — 1. This is a type REAL
vanable. (METRICI)

The derivative of the computational coordinate in the ADI
sweep direction with respect to the Cartesian coordinate y or
cylindrical coordinate r. 1 is the grid index in the sweep di-
rection, running from 1 to N. 1V is the gnd index in the
"vectorized” direction (i.e., the non-sweep direction in which
the “BLK” routines are vectorized), and runs from 2 to
N, — 1. This is a type REAL vanable. (METRICI)

Effective viscosity coefficient at time level ». This is a type
REAL variable. (FLOW1)

Dimensional reference viscosity coefficient. This 1s a type
REAL vanable. (FLOWI)

Turbulent viscosity coefficient at time level n. This is a type
REAL varnable. (FLOWI)

Variables Listed Alphabetically 27

NAMAX

NBC

NC

* NDTCYC

NEN

NET

NEQ N

g

NEQP

* NGLEOM

* NGRID

* NHIST

* NHMAX

NIN

* NITAVG

NMAXP

* NOUT
* NPLOT
* NPLOTX
NPRTI
NPRT2
NPTS N

28 Variables Listed Alphabetically

A PARAMETER equal to the maximum number of time
steps allowed in the moving average convergence test (the
ICTEST = 2 option). (PARAMSI)

A PARAMETER equal to the number of boundary condi-
tions per equation. (PARAMSI)

Array index associated with the continuity equation.
(NUMID

Number of time steps per cycle used in the time step cycling
procedure. (TIMEI)

Array index associated with the energy equation. (NUMI)

Array index associated with the dependent variable E;.
(NUMD)

The number of coupled governing equations actually being
solved. (NUMI)

A PARAMETER equal to the maximum number of coupled
equations that can be solved. (PARAMSI)

Flag used to specify type of computational coordinates; 1 for
Cartesian (x,p) coordinates, 2 for polar (,0') coordinates, and
10 to read the coordinates from unit NGRID. (GMTRY 1)
Unit number for reading grid file. (101)

Unit number for writing convergence history file. (101)
Maximum number of time levels allowed in the printout of
the convergence history file (not counting the first two, which
are always printed.) (I01)

Unit number for reading namelist input. (I01)

Number of time steps used in the moving average convergence
test. (TIMEL)

A PARAMETLR equal to the maximum of N1P and N2P.
(PARAMSI)

Unit number for writing standard output. (I01)

Unit number for writing CONTOUR or PLOT3D Q plot file.
(I01)

Unit number for writing PLOT3D XYZ plot file. (I01)
Total number of indices for printout in the ¢ direction. (101)
Total number of indices for printout in the # direction. (101)

The number of grid points in the sweep direction. (NUM1)

PROTELS 2-D Programmer’s Manual

NPTI

NPT2

NR

NRQIN
NRQOUT

NRU

NRV

NRW

NRXIN

NRXOUT

NSCRt

NTBC

NTBCA(I)

NTIME(])

NTOTP

NTP

NTSEQ

NTSEQP

Nyor N +1

Nyor N+ 1

PROTEUS 2-D Programmer’s Manual

The number of grid points in the ¢ direction used in com-
puting coefficients: N, for non-periodic boundary conditions;
N, + 1 for spatially periodic boundary conditions. (NUMI)

The number of grid points in the # direction used in com-
puting coefficients: N, for non-periodic boundary conditions;
N, + 1 for spatially periodic boundary conditions. (NUMI)

Array index associated with the dependent variable p.
(NUM))

Unit number for reading restart flow field. (RSTRTI)
Unit number for wrting restart flow ficld. (RSTRT1)

Array index associated with the dependent variable pu
(NUM]I)

Array index associated with the dependent varable pv.
(NUMD

Array index associated with the dependent vanable pw.
(NUMI)

Unit number for reading restart computational mesh.
(RSTRTI)

Unit number for wnting restart computational mesh.
(RSTRT!)

Unit number for scratch file in subroutine PLOT. (IO1)

Number of values in the tables of GTBC1 and/or GTBC2 vs.
NTBCA for general unsteady boundary conditions. (BCl)

Time levels at which GTBC]1 and/or GTBC2 are specified for
general unsteady boundary conditions. The subscript [=1 to
NTBC, corresponding to the NTBC values in the table.
(BCI)

Maximum number of time steps to march. I runs from 1 to
NTSEQP, corresponding to the time step sequence number.
(TIME]1)

A PARAMETER equal to the total storage required for a
single two-dimensional array (ie., N1P x N2P).
(PARAMSI)

A PARAMETER equal to the maximum number of entries
in the table of time-dependent boundary condition values.
(PARAMSI)

The total number of time step sequences being used.
(TIMEL)

A PARAMETER equal to the maximum number of time

step sequences in the time step sequencing option.
(PARAMSI)

Variables Listed Alphabetically 29

NV

NXM

NYM

NZM

NP

N2P

P(I1,12)
PR

* PRLR

PRR

* PRT

* PO

RAX(I)

* RER

RESAVG(,K)

RESL2(J K)

RESMAX(J,K)

14
Ny

R

avg

2

30 Variables Listed Alphabetically

The number of gnid potnts in the “vectorized” direction (i.c.,
the non-sweep direction in which the “BI.K” routines are
vectorized). Therefore, NV = N, for the first sweep and V| for
the second sweep. (NUMI)

Armray index associated with the x-momentum equation.
(NUMID)

Array index associated with the y or r-momentum equation.
(NUMD)

Array index associated with the swirl momentum equation.
(NUMYD)

‘The number of grid points in the ¢ direction. (NUMI)

A PARAMETER equal to the maximum number of grid
points in the ¢ direction. (PARAMSI)

The number of grid points in the 4 direction. (NUMI)

A PARAMETER equal to the maximum number of grid
points in the 5 direction. (PARAMSI)

Static pressure at time level n. (FLOWI)
Dimensional reference static pressure, p,RT./g,. (FLOWI)

Reference laminar Prandtl number, e, ik, where
¢ =y R[(y,—). (FLOWI)

Reference Prandtl number, pu2/k, T, (FLOWI)

Turbulent Prandtl number, or, if non-positive, a flag indicat-
ing the use of a variable turbulent Prandtl number. (TURBI)

Initial static pressure. (IC1)

1 for two-dimensional planar flow, and the local radius r for
axisymmetric flow. I is the grid index in the sweep direction,
running from 1to N. (METRICI)

Reference Reynolds number, p,ul, [u,. (FLOWI)

The average absolute value of the residual for the previous
time step. The subscript J =1 to ¥, corresponding to the
N,, coupled governing equations, and K =1 or 2, corre-
sponding to the residual computed without and with the arti-
ficial viscosity terms. (TIMEI)

The I, norm of the residual for the previous time step. The
subscript J =1 to N,,, corresponding to the N,, coupled gov-
erning equations, and K =1 or 2, corresponding to the resi-
dual computed without and with the artificial viscosity terms.
(TIMED)

The maximum absolute value of the residual for the previous

time step. The subscript J =1 to N, corresponding to the
N,, coupled governing equations, and K =1 or 2, corre-

PROTELS 2-D Programmer’s Manual

sponding to the residual computed without and with the arti-
ficial viscosity terms. (TIMED)

RHO(I1,12)

RHOL(I1,12)

RHOR
RMAX
RMIN

S(IV,LY)

SQ(1.J)

T(11,12)

TAU(I1,12)

* REXTI Re, Reynolds number at the beginning of the transition region,
based on maximum total velocity and distance from & = 0, for
flow predominantly in the ¢ direction with a leading edge at
&E=0. (TURBI)

* REXT2 Re, Reynolds number at the beginning of the transition region,
based on maximum total velocity and distance from » = 0, for
flow predominantly in the » direction with a leading edge at
n=0. (TURBI)

* RG R Dimensional gas constant. (FLOWI)

RGAS Nondimensional gas constant. (FLOWI)

Static density at time level n. (FLOWI)

Static density at previous or intermediate time level.
(FLOW1)

Dimensional reference density. (FLOW1)
Maximum # coordinate for polar grid option. (GMTRY1)
Minimum 7 coordinate for polar grid option. (GMTRY1)

Subvector of source terms at grid point I in the block
tridiagonal system of equations. [is the gnd index in the
sweep direction, running from 1 to N. IV is the grid index in
the “vectorized” direction (i.e., the non-sweep direction in
which the “BLK” routines are vectorized), and runs from 2 to

N, — 1. The subscript J=1 to N,,, corresponding to the N,
coupled governing equations. (NUMI)

An array controlling the packing of grid points using the
Roberts transformation. The subscript =1 or 2, corre-
sponding to the ¢ and 5 directions, respectively. SQ(I,1)
specifies the location of packing, and SQ(I,2) specifies the
amount of packing. (NUMI)

Static temperature at time level n. (FLOWI)

Current value of the time marching parameter. (TIMET)

* THC(I) 4,, 6, A two-element array specifying the time difference centering
parameters used for the continuity equation. (NUMI)

* THE(D) 8,, 0, 8, A three-element array specifying the time difference centering
parameters used for the energy equation. (NUMI)

* THMAX O e Maximum 0’ coordinate in degrees for polar grid option.
(GMTRYY)
* THMIN 0 .. Minimum & coordinate in degrees for polar gnid option.

(GMTRY1)

PROTEUS 2-D Programmer’s Manual Variables Listed Alphabetically 31

*

THX(I)

THY(I)

THZ(I)

TITLE

TL(I1,12)

TR
TO

U(1,12)

UL(I1,12)

UR
Lo

V(I1,12)

VI(I1,12)

VORT(11,12)

Vo

W(I1,12)

WL(I1,12)

WO
X(I1,12)

XIT(I1,12)

XIX(11,12)

0,, 8, 0,

6]! 02' 93

0y, 0, 0,

32 Variables Listed Alphabetically

A three-clement array specifying the time difference centering
parameters used for the x-momentum equation. (NUM])

A three-element array specifying the time difference centering
parameters used for the y or -momentum equation. (NUMI)

A three-element array specifying the time difference centering
parameters used for the swirl momentum equation. (NUMI)

Title for pnnted output and CONTOUR plot file, up to 72
characters long. This i1s a type CHARACTER vanable.
(TITLED)

Static temperature at previous or intermediate time level.
(FLOWYI)

Dimensional reference temperature. (FLOW1)
Imitial static temperature. (IC1)

Velocity in the Cartesian x direction at time level n.
(FLOW1)

Velocity in the Cartesian x direction at previous or interme-
diate time level. (FLOWTI)

Dimensional reference velocity. (FLOW)
Initial velocity in the Cartesian x direction. (IC1)

Velocity in the Cartesian y direction or cylindnical r direction
at time level n. (FLOWI)

Velocity in the Cartesian yp direction or cylindrical r direction
at previous or intermediate time level. (FLOWI)

Total vorticity magnitude. (TURBI)

Initial velocity in the Cartesian y direction or cylindncal r di-
rection. (ICIH)

Swirl velocity at time level n. (FLOWI)

Swirl velocity at previous or intermediate time level.
(FLOWI)

Initial swirl velocity. (IC1)
Cartesian x coordinate. (METRICI)

The dernivative of the computational coordinate ¢ with respect
to untransformed time ¢. (METRICI)

The denvative of the computational coordinate ¢ with respect
to the Cartesian coordinate x. (METRICI)

PROTELS 2-D Programmer’s Manual

v

NIY(IL,12) ¢, or g, The derivative of the computational coordinate & with respect
to the Cartestan coordinate p or cylindncal coordinate r.
(METRICT)

* O OXMAX Xk Maximum x coordinate for Cartestan grid - option.
(GMTRYD)

* XMIN X, Mimmmum x coordinate for Cartesian gnid option.
(GMTRY)

Y(HLI2) yoryr Cartesian p coordinate or ¢ylindrical » coordinate.
(METRICI)

* Y MAX Prua Maximum p coordinate for Cartesian grid option.
(GMTRYD

O YMIN Frm Minimum ¢ coordinate for Cartesian gnd option.

{GMTRY)

3.3 COMMON VARIABLES LISTED SYMBOLICALLY

In this section many of the PROTEUS Fortran vanables stored in common blocks are defined, listed
symbolically. Note that this list docs not include those variables without symbolic representations, such
as vartous flags, or those whose meaning depends on other parameters, such as the boundary condition
values and sweep direction metnes. The variables marked with an astenisk are input variables. More details
on these may be found i Section 3.1 of Volume 2. 'The common block cach vanable is stored in is given
in parentheses at the end of cach definition. For subscripted variables, the subscripts are defined along with
the variable, except for the subseripts 1D and 12, which are the indices 7 and j in the & and y directions, re-
spectively, and run from 1 to N and N,

Unless otherwise noted, all vanables representing physical quantities are nondunensional. The
nondimensionalizing procedure s desernbed in Section 3.1.1 of Volume 2. 'The type (real or integer) of the
vartables follows standard Fortran convention, unless stated otherwise. (Le., those starting with 1, J, K,
1., M, or N are integer, and the remainder are reall)

Fortran
Symbol Variable Definition

R APLUS Van Drest damping constant in the mner and outer regions
of the Baldwin-1 omax turbulence model. (TURBIL)

A A(IV,1],K) Subdiagonal submatrix of cocfficients at gnd point I in the
block tridiagonal coefficient matrix. [1s the gnd index in the
sweep direction, running from 1 to V. 1V 1s the gnd index in
the “vectorized” direction (1.¢., the non-sweep direction in
which the "Bl K” routines are vectorized), and runs from 2 to
N, — 1. The subscript J = 1 to N,,, corresponding to the N,
coupled governing equations, and K = 1 to V,, corresponding
to the N,, dependent variables. (NUMI)

B CB Constant used in the formula for the Klebanoft intermittency
factor Fy,, in the outer region of the Baldwin-I omax turbu-
lence model, and in the inner region of the Spalding-
Kleinstein turbulence model. (TURBI)

B B(IV,1J,K) Diagonal submatrix of coefficients at grid point 1 in the block

tridiagonal coefficient matrix. I 1s the gnd index in the sweep
direction, running from 1 to V. IV 1s the gnd index in the

PROTEUS 2-D Programmer’s Manual Variables Listed Alphabetically 33

CP(11,12)
CV(11,12)

CcCP

CCPI-CCP4

CK1-2

CKLEB

CMUI-2

CWK

CUV,1J,K)

ER
ET(11,12)
ETL(I1,12)
GC

HSTAG

HSTAGR

[1

34 Variables Listed Symbolically

“vectorized” direction (i.e., the non-sweep direction in which
the "BLK” routines are vectonzed), and runs from 2 to
N, — 1. The subscript J =1 to ,,, corresponding to the V,,
coupled governing equations, and K = 1 to \V, , corresponding
to the N, dependent variables. (NUMI)

Specific heat at constant pressure at time level n. (FLOWI)
Specific heat at constant volume at time level n. (FLOW 1)

Constant used in the outer region of the Baldwin-Lomax tur-
bulence model. (TURBI)

Constants in empirical formula for specific heat as a function
of temperature. (FLOWI)

Constants in empirical formula for thermal conductivity coef-
ficient as a function of temperature.

Constant used 1n the formula for the Klebanoff intermittency
factor Fy,, in the outer region of the Baldwin-I.omax turbu-
lence model. (TURBI)

Constants in empincal formula for laminar viscosity coeffi-
cient as a function of temperature. (FLOW1)

Constant used in the formula for F,,,, in the outer region of
the Baldwin-Lomax turbulence model. (TURBI)

Superdiagonal submatrix of coefficients at grid point I in the
block tridiagonal coefficient matrix. 1 is the grid index in the
sweep direction, running from 1 to N. IV is the grid index in
the “vectorized” direction (i.e., the non-sweep direction in
which the "BLK” routines are vectorized), and runs from 2 to
N, — 1. 'The subscript] = I to N,, corresponding to the N,
coupled governing equations, and K = 1 to ¥,,, corresponding
to the N,, dependent vanables. (NUMI)

Dimensional reference energy, p, 2. (FLOWI)
Total energy at time level n. (FLOWI)
Total energy at previous or intermediate time level. (FLOWI)

Dimensional proportionality factor in Newton’s second law,
either 32.174 Ib,-ft/1b-sec?, or 1.0 kg-m/N-sec?. (FLOWI)

Stagnation enthalpy used with constant stagnation enthalpy
option. (FLOWI)

Dimenstonal stagnation enthalpy used with constant stag-
nation enthalpy option. (FLOW1)

Gnd point index n the € direction. (NUMI)
Grid point index in the “vectorized” direction (i.e., the non-
sweep direction in which the "BLK” routines are vectorized).

Therefore, IV = for the first sweep and i for the second
sweep. (NUMI)

PROTELS 2-D Programmer’s Manual

I2

JI(TL,12)

KT(11,12)

KTR

CCLAU

LR

MACHR

IT

CNA

CNL

NPTS

NEQ

NV

N1

NPTI

NPT1

N2

NPT2

PROTELUS 2-D Programmer’s Manual

Gnd point index in the x direction. (NUMI)

Inverse Jacobian of the non-orthogonal grid transformation.
(For axisymmetric flow, in the COEF routines JI = r/"!, the
product of the local radius and the inverse Jacobian.) This is
a type REAL varable. (METRICI)

Fffective thermal conductivity coefficient at time level n. This
is a type REAIL. vanable. (FLLOWI)

Dimensional reference thermal conductivity coefficient. This
is a type REAIL vanable. (FLOW1)

Clauser constant used in the outer region of the Baldwin-
1 omax turbulence model. (TURBI)

Dimensional reference length. This is a type REAL vanable.
(FLOWI)

Reference Mach number, w/(y,R T)¥2. This is a type REAL
variable. (FLOWI)

Current time step number, or known time level. Time step
number n updates the solution from time level 7 to n+ 1.
(TIMED)

Exponent in the formula usced to average the two outer region
u, profiles that result when both boundaries in a coordinate
direction are solid surfaces. (TURBI)

Exponent in the Launder-Priddin modified mixing length
formula for the inner region of the Baldwin-I.omax turbulence
model. (TURBI1)

The number of grid points in the sweep direction. (NUMI1)

The number of coupled governing equations actually being
solved. (NUMI)

The number of grid points in the “vectorized” direction (i.e.,
the non-sweep direction in which the "BLK” routines are
vectorized). Therefore, NV = N, for the first sweep and N, for
the sccond sweep. (NUMI)

The number of grid points in the ¢ direction. (NUMI)

The number of grid points in the ¢ direction used in com-
puting cocfficients (only for non-periodic boundary condi-
tions.) (NUMI)

The number of grid points in the ¢ direction used in com-
puting cocfficients (only for spatially periodic boundary con-
ditions.) (NUMI)

The number of gnd points in the 4 direction. (NUMI)

The number of grid points in the » direction used in com-

puting coefficients (only for non-periodic boundary condi-
tions.) (NUMI)

Variables Listed Symbolically 335

N+] NPT2 ‘The number of grid points in the » direction used in com-
puting coethicients (only for spatially periodic boundary con-
ditions.) (NUMID)

g P(11.12) Static pressure at time level 2. (FLOW])

p. PR Dimensional reference static pressure, p, R 7'/g.. (FLOWI)

* o PO Initial static pressure. (I1C1)

aplok, DPDET(D The denvative of p with respect to £, stored as a one-
dimensional array in the sweep direction. ‘The subscript |
theretore runs from 1 to N, (FLOWI)

pldp DPDRHO(D The denvative of p with respect to p, stored as a one-
dimensional array in the sweep direction. ‘The subscript |
therefore runs from [to N, (FLOWI)

apld(p DPDRU(D The derivative of p with respect 10 pu, stored as a one-
dimenstonal array in the sweep direction. The subscript |
thercfore runs from 1 to N, (FLOWI)

Opld(pv) DPDRV(D The denvative of p with respect to py, stored as a one-
dimensional array in the sweep direction. The subseript |
therefore runs from 1 to V. (FLOWD

apldpw) DPDRW(I) I'he derivative of p with respect to pw, stored as a one-
dimensional array in the sweep direction. The subscript |
therefore runs from 1 to N, (FLOWI)

* P PRLR Reference laminar Prandtl number, ¢, /K, where
=y,R/(y.,—). (FLOWI)

Pr, PRR Reference Prandtl number, w12/k,7,. (FLOWI)

* Py, PRT Turbulent Prandt] number, or, if non-positive, a flag indicat-
ing the use of a variable turbulent Prandt] number. (TURBI)

AQ,,, CHGAVG((D Maximum change in absolute value of the dependent vari-
ables, averaged over the last NITAVG time steps® The sub-
seript T=1 to NV, comesponding to the N,, dependent
varables. (TIMEL)

AQ,... CHGMAX(L) Maximum change in absolute value of the dependent variables
over a smngle time step.* The subscript 1=1 to N, corre-
sponding to the N, dependent variables, and J=1 to
NITAVG, the number of tune steps used in the moving av-
crage option for determining convergence. (TIME1D)

r Y(I1.12) Cyhindneal r coordinate. (METRICH)

r RAX(D [Local radius » for axisymmetric flow. 1is the grid index in the
sweep direction, running from 1 to N. (METRICI)

4 For the cnergy equation, the change in £ is divided by ET =p, RT Ay, — 1)+ u2{2, so that it is the same order

of magnltudc as the other conservation variables.

36 Variables Listed Symbolically

PROTELS 2-D Programmer’s Manual

* 'Jmax
* r’mm
Ravg
R,
Rmax
+ R
R
* Re,
* Re,
* Re,
S
* At
T
T

RMAX

RMIN

RESAVG(J K)

RESL2(J,K)

RESMAX(J,K)

RG
RGAS
RER

REXTI

REXT2

S(1V,1.J)

DT(I)

T(1,12)

TL(L,12)

PROTELUS 2-D Programmer’s Manual

Maximum 7 coordinate coordinate for polar grid option.
(GMTRY)

Minimum 7 coordinate coordinate for polar grid option.
(GMTRY])

The average absolute value of the residual for the previous
time step. The subscript J =1 to N,,, corresponding to the
N,, coupled governing equations, and K =1 or 2, corre-
sponding to the residual computed without and with the arti-

ficial viscosity terms. (TIME])

The L, norm of the residual for the previous time step. The
subscript J =1 to N, corresponding to the ¥, coupled gov-
erning equations, and K = | or 2, corresponding to the resi-
dual computed without and with the artificial viscosity terms.

(TIMEL)

The maximum absolute value of the residual for the previous
time stcp. The subscript J =1 to N,,, corresponding to the
N,, coupled governing equations, and K =1 or 2, corre-
sponding to the residual computed without and with the arti-

ficial viscosity terms. (TIME]1)

Dimensional gas constant. (FLOW1)
Nondimensional gas constant. (FLOWI)
Reference Reynolds number, p,ul fu,, (FLOWI)

Reynolds number at the beginning of the transition region,
based on maximum total velocity and distance from ¢ = 0, for
flow predominantly in the ¢ direction with a leading edge at
¢=0. (TURBI)

Reynolds number at the beginning of the transition region,
based on maximum total velocity and distance from n = 0, for
flow predominantly in the » direction with a leading edge at
n=0. (TURBI)

Subvector of source terms at grid point I in the block
tndiagonal system of equations. I is the grid index in the
sweep direction, running from ! to . IV is the grid index in
the “vectorized” direction (i.e., the non-sweep direction in
which the "BLK” routines are vectorized), and runs from 2 to
N, — 1. The subscript] =1 to N, corresponding to the N,

coupled governing equations. (NUM1)

The time step size, when specified directly as input. [is the
time step sequence number, and runs from ! to NTSEQ.
(TIMED)

Static temperature at time level n. (FLOWI)

Static temperature at previous or intermediate time level.

(FLOW1)

Variables Listed Symbolically 37

oTJoE;

oT|dp

oT|3(pu)

oT|3(pv)

3T|8(pw)

1%

DTDET(I)

DTDRHO(I)

DTDRU(I)

DTDRV(I)

DTDRW(I)

TR
T0
U(I1,12)

ULA1,12)

UR
Uo
V(I1,12)

VL(I1,12)

Vo

w(I1,12)
WL(I1,12)

Wo
X(11,12)

XMAX

XMIN

Y(11,12)

38 Variables Listed Symbolically

The denvative of T with respect to £, stored as a one-
dimensional array in the sweep direction. The subscript |
therefore runs from 1to N. (FLOWI)

The derivative of 7 with respect to p, stored as a one-
dimensional array in the sweep direction. The subscript I
therefore runs from [to V. (FLOWI)

The derivative of T with respect to pu, stored as a one-
dimensional array in the sweep direction. The subscript 1
therefore runs from | to N. (FLOWI)

The derivative of 7 with respect to pv, stored as a one-
dimensional array in the sweep direction. The subscrpt I
therefore runs from 1to N. (FLOWI)

The derivative of 7 with respect to pw, stored as a one-
dimensional array in the sweep direction. The subscnpt I
therefore runs from 1 to N. (FLOWI)

Dimensional reference temperature. (FLOW1)

Initial static temperature. (ICI)

Velocity in the Cartesian x direction at time level n.
(FLOWI)

Velocity in the Cartesian x direction at previous or interme-
diate time level. (FLOWI)

Dimensional reference velocity. (FLOWI)
Initial velocity in the Cartesian x direction. (ICl)

Velocity in the Cartesian y direction or cylindrical 7 direction
at time level n. (FLOWI)

Velocity in the Cartesian y direction or cylindrical r direction
at previous or intermediate time level. (FLOW1)

Initial velocity in the Cartesian y direction or cylindrical r di-
rection. (IC1)

Swirl velocity at time level 7. (FLOWI)

Swirl velocity at previous or intermediate time level.
(FLOW1)

Initial swirl velocity. (ICl)
Cartesian x coordinate. (METRICI)

Maximum x coordinate for Cartesian gnd option.
(GMTRY1)

Minimum x coordinate for Cartesian grid option.

(GMTRY1])

Cartesian y coordinate. (METRICI)

PROTELS 2-D Programmer’s Manual

*
ymcx

a4

L5

* 8%2)

P

£

",

1,

ur

N,

Nx

YMAX

YMIN

ALPHA

ALPHAI

ALPHA2

EPS(I)

CAVS2L(I)

CAVS4E(I)

CAVS2I(I)

ETAY(I1,12)

METY(IV,])

ETAT(11,12)

METT(IV,I)

ETAX(11,12)

PROTELS 2-D Programmer’s Manual

Maximum p coordinate for Cartesian grid option.
(GMTRY])

Minimum p coordinate for Cartesian grid option.
(GMTRY1)

Difference centering parameter for first derivatives in the ADI
sweep direction. (NUMI)

Difference centering parameter for & direction first derivatives.
ALPHAL = 0.0, 0.5, or 1.0 corresponding to forward, central,
and backward differences, respectively. (NUMI)

Difference centering parameter for # direction first derivatives.
ALPHA2 = 0.0, 0.5, or 1.0 corresponding to forward, central,
and backward differences, respectively. (NUMI)

Convergence level to be reached. The subseript I=1 to Neo
corresponding to the V,, dependent variables. (TIMEL)

Second-order explicit artificial viscosity coefficient in constant
coefficient model. The subscript [=1 to V,,, corresponding
to the N,, coupled governing cquations. (NUMI)

Fourth-order explicit artificial viscosity cocfficient in constant
cocfficient model. The subscript I =1 to ¥,,, corresponding
to the N,, coupled governing equations. (NUMD

Second-order implicit artificial viscosity coefficient in constant
cocfficient model. The subscript I =1 to V,,, corresponding
to the V,, coupled governing equations. (NUMI)

The derivative of the computational coordinate n with respect
to the cylindrical coordinate r. (METRICI)

The derivative of the computational coordinate »n with respect
to the cylindrical coordinate r (second ADI sweep only.) Iis
the grid index in the sweep direction, running from 1 to N.
IV is the grid index in the “vectorized” direction (ie., the
non-sweep direction in which the “BLK” routines are
vectorized), and runs from 2 to N, — 1. This is a type REAL
variable. (METRICI)

The derivative of the computational coordinate » with respect
to untransformed time ¢. (METRICI)

The derivative of the computational coordinate » with respect
to untransformed time ¢ (second ADI sweep only.) I is the
grid index in the sweep direction, running from 1 to N. IV is
the grid index in the “vectorized” dircction (i.e., the non-sweep
direction in which the “BLK” routines are vectorized), and
runs from 2 to N,—1. This is a type REAL variable.
(METRICI)

The derivative of the computational coordinate » with respect
to the Cartesian coordinate x. (METRICI)

Variables Listed Symbolically 39

Nx

Ny

Ny

Ay

An

K>

Kq

Vr

pf

H,

METX(IV,I)

ETAY(I1,12)

METY(IV,])

DEL

DETA

CVK

CAVS2E(]D)

CAVS4E(I)

GAMR

LA(I1,12)

MU(I,12)

MUR

MUT(11,12)

XIY(11,12)

METY(IV.I)

40 Variables Listed Symbolically

The derivative of the computational coordinate » with respect
to the Cartesian coordinate x (second ADI sweep only.) I 1is
the grid index in the sweep direction, running from 1 to N.
IV is the gnd index in the “vectorized” direction (i.e., the
non-sweep direction in which the "BLK” routines are
vectorized), and runs from 2to ¥, — 1. This is a type REAL
variable. (METRICI)

The derivative of the computational coordinate » with respect
to the Cartesian coordinate p. (METRICI)

The derivative of the computational coordinate » with respect
to the Cartesian coordinate y (second ADI sweep only.) I is
the grid index in the sweep direction, running from 1 to N.
IV is the gnid index in the “vectorized” direction (i.c., the
non-sweep direction in which the “BLK” routines are
vectorized), and runs from 2to N, — . This is a type REAL
variable. (METRICI)

Computational gnd spacing in the » direction (second ADI
sweep only.) (NUMI)

Computational grid spacing in the # direction. (NUMI)

Von Karman mixing length constant used in the inner region
of the Baldwin-Lomax and Spalding-Kleinstein turbulence
models. (TURBI)

User-specified constant in nonlinear coefficient artificial
viscosity model. The subscript I =1 to V,,, corresponding to

the N,, coupled governing equations. (NUM]1)

User-specified constant in nonlinear coefficient artificial
viscosity model. The subscript I = 1 to N, , corresponding to
the N, coupled governing equations. (NUM]I)

Reference ratio of specific heats, ¢ /e, (FLOWI)

Effective second cocfficient of viscosity at time level 7 (usually
assumed cqual to —2u/3.) This is a type REAL vanable.
(FLOWI)

Effective viscosity coefficient at time level n. This is a type
REAL variable. (FLOW1)

Dimensional reference viscosity coefficient. This is a type
REAL variable. (FLOWI)

Turbulent viscosity cocfficient at time level 2. This is a type
REAL variable. (FLOW1)

The derivative of the computational coordinate ¢ with respect
to the cylindrical coordinate r. (METRICI1)

The denvative of the computational coordinate ¢ with respect
to the cylindrical coordinate r (first ADI sweep only.) 1is the
grid index in the sweep direction, running from 1to N. IV is
the grid index in the “vectorized” direction (i.e., the non-sweep
direction in which the "BLK” routines are vectorized), and

PROTELUS 2-D Programmer’s Manual

Pt

2l

i’).’

At

max

min

XIT(I1,12)

METTVD

XIX(I1.12)

METX(IV.D)

XIY(I11.12)

METY(IV.])

DEL

DXI
RITO(I1,12)

RHOL(I1,12)

RHOR
TAU(IL,12)
DTAU(I1,12)

THMAX

THMIN

PROTELS 2-D Programmer’s Manual

runs from 2 to N, -~ 1. This 1s a type RI'Al vanable.
(METRICH

The denvative of the computational coordinate & with respect
to untransformed time . (METRICH

The dertvative of the computational coordinate £ with respect
to untransformed time ¢ (first ADI sweep only.) T is the gnd
index in the sweep direction, running from 1 to N, IV is the
grid index in the “vectorized” direction (i.e., the non-sweep
direction in which the "B1.K” routines are vectonized), and
runs from 2 to N - 1. This 15 a type REAL vanuble.
(METRICT)

The denvative of the computational coordinate & with respect
to the Cartestan coordinate v (METRICT

The denvative of the computational coordinate & with respect
to the Cartesian coordinate v (first ADL sweep only.) s the
grid index in the sweep direction, runmng from 1 to N, 1V is
the gnd index in the “vectorized” dircction (1.e., the non-sweep
direction in which the "BI K” routines are vectorized), and
runs trom 2 to N, — 1. This 15 a type REAIL vanable.
(METRIC

The denvative of the computational coordinate £ with respect
to the Cartesian coordinate p. (METRICT

The denvative of the computational coordinate ¢ with respect
to the Cartestan coordmnate p (first ADI sweep only.) 1is the
grid index in the sweep direction, running trom 1to V. 1V is
the grid index in the “veetorized” direction (i.e., the non-sweep
direction in which the "Bl K” routines arc vectorized), and
runs from 2 to N, -- 1. This 1s a type RUAL varable.
(METRICI)

Computational pad spacing in the ¢ direction (first ADI
sweep only) (NUMI

Computational gnd spacing in the & direction. (NUMI)
Static density at time level 7o (FLOW])

Static density at previous or intermediate time level.

(FILOWY)

Dimensional reference density. (FLOWI)

Current value of the time marching parameter. (TIMED)
Computational time step size. (TTMIE])

Maximum &' coordinate in degrees for polar gnd option.

(GMTRY])

Minimum ¢’ coordinate in degrees for polar grnid option.
(GMTRY)

Variables Listed Symbolically 41

0, 0, THC() A two-element array specifying the time difference centening
parameters used for the continuity equation. (NUMI)

* 0, 0, 0, THE(D) A three-element array specifying the time difference centering
parameters used for the energy equation. (NUMI)

* 9, 0, 6, THX(I) A three-element array specifying the time difference centering
parameters used for the x-momentum equation. (NUMI)

8, 8, 0, THY(I) A three-element array specifying the time difference centering
parameters used for the y or r-momentum equation. (NUM]I)

* 8, 0, 8, THZ(D) A three-element array specifying the time difference centering
parameters used for the swirl momentum equation. (NUM]I)

|(2| VORT(I1,12) Total vorticity magnitude. (TURBI)

3.4 COMMON VARIABLES LISTED BY COMMON BLOCK

In this section all the PROTEUS Fortran variables stored in common blocks are defined, with each
block listed separately. Within each block, the variables are listed alphabetically. Those marked with an
asterisk are input variables. More details on these variables may be found in Section 3.1 of Volume 2. For
subscripted variables, the subscripts are defined along with the variable, except for the subscripts I1 and 12,
which are the indices i and k& in the ¢ and » directions, respectively, and run from | to N, and N,.

Unless otherwise noted, all vanables representing physical quantities are nondimensional. The
nondimensionalizing procedure is described in Section 3.1.1 of Volume 2. The type (real or integer) of the
variables follows standard Fortran convention, unless stated otherwise. (l.e., those starting with [, J, K,
L, M, or N are intcger, and the remainder are real.)

Common Block BC1

This common block contains variables dealing with the application of boundary conditions.

Fortran
Vanable Symbol Definition

* FBCI(I2,1L]) Point-by-point values used for steady boundary conditions on
the & = 0 and £ = 1 surfaces. These are either set in the input,
if a point-by-point distribution is being specified by the user,
or by the program itself. I runs from 1 to N,, corresponding
to the N,, conditions nceded, and J =1 or 2, corresponding
to the ¢ = 0 and ¢ = 1 boundaries, respectively.

* FBC2(ILLY) Point-by-point values used for stcady boundary conditions on
the # = 0 and » = 1 surfaces. These are either set in the input,
if a point-by-point distribution is being specified by the user,
or by the program itsclf. I runs from 1 to .V, corresponding

to the N,, conditions needed, and J =1 or 2, corresponding

tothe p =0

* GBCILY) Values used for steady boundary conditions on the ¢ = 0 and

¢ = | boundaries, when specified for the entire surface. I runs
from 1 to N,,, corresponding to the NV, conditions needed, and
J =1 or 2, corresponding to the ¢ =0 and ¢ = 1 boundares,

respectively.

42 Variables Listed Symbolically PROTELS 2-D Programmer’s Manual

+ GBC2(L))

+ GTBCI(K,L))

* GTBC2(K,LJ)

IBCELM(LJ)

+ IBCI(I2LJ)

* IBC(I1,LJ)

IBVLUP(])

PROTELS 2-D Programmer’s Reference

Values used for steady boundary conditions on the » = 0 and
n = 1 boundaries, when specified for the entire surface. 1 runs
from 1 to N,,, corresponding to the N,, conditions needed, and
J =1 or 2, corresponding to the =0 and y = | boundaries,
respectively.

A variable used to specify the values for unsteady and time-
periodic boundary conditions on the £ =0 and { =1 bound-
aries. 1 runs from 1 to N, comesponding to the N,
conditions needed, and J = 1 or 2, corresponding to the { =0
and ¢ =1 boundaries, respectively. For general unsteady
boundary conditions, K = 1 to NTBC, corresponding to the
time levels in the array NTBCA, and GTBCI specifies the
boundary condition value directly. For time-periodic bound-
ary conditions, K = 1 to 4, and GTBCI specifies the four co-
efficients in the equation used to determine the boundary
condition value.

A variable used to specify the values for unsteady and time-
periodic boundary conditions on the =0 and =1 bound-
aries. | runs from 1 to N, corresponding to the N,
conditions needed, and J = 1 or 2, corresponding to the =0
and 5 =1 boundaries, respectively. For general unstcady
boundary conditions, K = 1 to NTBC, corresponding to the
time levels in the array NTBCA, and GTBC2 specifies the
boundary condition value directly. For time-periodic bound-
ary conditions, K =1to 4, and GTBC2 specifies the four co-
cfficients in the equation used to determine the boundary

condition value.

Flags for climination of off-diagonal sub-matrices resulting
from gradient or extrapolation boundary conditions: 0 if
elimination is not necessary, 1 if it is. The subscript I =1 or
2 corresponding to the sweep direction, and J = 1 or 2 corre-
sponding to the lower or upper boundary in that direction.

Flags specifying, point-by-point, the type of steady boundary
conditions used on the & =0 and & = 1 surfaces. These arc
cither sct in the input, if a point-by-point distribution 1s
specified by the user, or by the program itself. I runs from 1
to N,,, corresponding to the V,, conditions needed, and J =1
or 2, corresponding to the ¢ =0 and ¢ =1 boundanes, re-

spectively.

Flags specifying, point-by-point, the type of stcady boundary
conditions used on the y =0 and 5 = 1 surfaces. These are
cither set in the input, if a point-by-point distribution 1s
specified by the user, or by the program itself. 1 runs from 1|
to N,,, corresponding to the .V, conditions needed, and J =1
or 2, corresponding to the # =0 and » =1 boundaries, re-
spectively.

Flags for updating boundary values from the first sweep after
the last sweep: 0 if updating is not necessary, 1 if it 1s. Up-
dating is required when gradient or extrapolation boundary
conditions are used. The subscript [=1 or 2, corresponding
1o the lower or upper boundary in the first sweep direction.

Variables Listed by Block 43

ITDBC

* IBCKL

* JBC2(T)

* JIBCHLY)

* O JIBC2LD

KBCPER(D)

+ KBCI()

+ KBC2(J)

* NITBC

* NTBCA(D

Common Block DUMMY 1

Flag for time-dependent boundary conditions; 0 if all bound-
ary conditions are steady, 11f any general unsteady boundary
conditions are used, 2 if only steady and time-perodic
boundary conditions are used.

Flags specifying the type of steady boundary conditions used
on the ¢ =0 and ¢ = 1 surfaces, when specitied tor the entire
surface. I runs from 1 to N, corresponding to the V., con-
ditions needed, and J = 1 or 2, corresponding to the & - () and
& =1 boundunes, respectively.

o7

Flags specifying the type of steady boundary conditions used
on the = 0 and y = | surfaces, when speatied for the entire
surface. T runs from 1 to N, corresponding to the N | con-
ditions nceded, and J = 1 or 2, corresponding to the y = 0 :d
i = 1 boundaries, respectively.

A vanable specitving the type of time dependency for the
boundary conditions on the & =0 and ¢ = 1 boundarics. |
runs from 1 to N, corresponding to the N, conditions
needed, and J =1 or 2, comresponding to the ¢ =0 and & = 1
boundaries, respectively.

A vanable specifying the type of time dependency for the
boundary conditions on the » = 0 and 5 = | boundarics. |
runs from | to N, . corresponding to the N conditions
needed, and J = 1 or 2, corresponding to the iy = 0 and 5 - |
boundarnies, respectively.

Flags for spatially periodic boundary conditions: € for non-
&3 1or spahially pent ; Y &
periodic, 1 for penodic. The subscript T=1 or 2, corre-

4

sponding to the ¢ and y directions, respectively.
Flags for type of boundaries in the & direction. The subscript

J =1 or 2, corresponding to the & =0 and ¢ = | boundarics,
respectively.

Flags for type of boundaries in the direction. The subscript
J =1 or 2, corresponding to the y =0 and » = | boundurics,
respectively.

Number of values in the tables of GTBC! and‘or GTBC?2 vs.
NTBCA for general unsteady boundary conditions.

Time levels at which GTBCI and;or G'TBC2 are specified for
general unsteady boundary conditions. The subscript 1= 1 to
NTBC, corresponding to the NTBC values in the table.

This common block contains a variable used for temporary scratch storage in several subroutines.

Fortran
Variable

DUNMDMY(I11,12)

Variables Listed by Block

Definition

Dummy array used for temporary storage in several subrou-
tines.

PROTELUS 2-D Programmer’s Reference

Common Block FLOW1

This common block contains variables dealing with the flow being computed, and with the basic prop-

dimensional vanables.
name of the corresponding two-dimensional varia
IBASE and ISTEP (see common block NU
access a particular location in a two-dimensional array.
because it allows the same coding to be used for both sweeps.

Fortran
Variable

CCPl1-4

CKl1-2

CMUI-2

CP(I1,12)

CV(I1,12)

DPDET(I)

DPDRHO(I)

DPDRU(I)

DPDRV(])

DPDRW(I)

DTDET(I)

DTDRHO(I)

DTDRU(I)

erties of the fluid. Several of the two-dimensional vara
The names of the one-dimension

Symbol

C,-C.,

cpl <p

Ckl - Ck2

- C’n2

ul

ap[o(pw)

ap[d(pv)

op|o(pw)

oT|3E,

aT/dp

aT|d(pu)

PROTELUS 2-D Programmer’s Reference

Definition

bles are equivalenced to corresponding one-
al variables were created by adding a “1” to the
ble (e.g., ET and ET1, P and P1, etc) Using the variables
M1), a one-dimensional indexing scheme can thus be used to
This is useful, in the COEF routines for example,

Constants in empirical formula for specific heat as a function

of temperature.

Constants in empirical formula for thermal conductivity coef-

ficient as a function of temperature.

Constants in empircal formula for laminar viscosity coeffhi-

cient as a function of temperature.

Specific heat at constant pressure at time level n.

Specific heat at constant volume at time level n.

The denvative of p with respect to FEp,

dimensional array in the sweep direction.

thercfore runs from | to N.

The derivative of p with respect to p,

dimensional array in the sweep direction.

therefore runs from | to N.

The derivative of p with respect to pu,

dimensional array in the sweep direction.

therefore runs from | to V.

The derivative of p with respect to pv,

dimensional array in the sweep direction.

therefore runs from | to N.

The dervative of p with respect to pw,

dimensional array in the sweep dircction.

therefore runs from 1 to N.

The derivative of T with respect to Eq,

dimensional array in the sweep direction.

therefore runs from 1 to V.

The denvative of 7 with respect to p,

dimensional array in the sweep direction.

therefore runs from 1 to V.

The denvative of T with respect to pu,

dimensional array in the sweep direction.

therefore runs from 1 to N.

stored as a one-
The subscript I

stored as a one-
The subscript [

stored as a one-
The subscript |

stored as a one-
The subscnpt |

stored as a one-
The subscript I

stored as a one-
The subscript |

stored as a one-
The subscript 1

stored as a one-
The subscript |

Variables Listed by Block 45

DTDRV(I)

DTDRW(I)

ER
ET(11.12)
ETI(11,12)
GAMR

GC

HSTAG

HSTAGR

ICVARS

IEULER

IGAM

IHSTAG

ILAMV

INEG

ISWIRL

ITHIN(I)

KT(I1,12)

KTR

aT|d(pv)

0T[d(pw)

46 Variables Listed by Block

The derivative of 7' with respect to pv, stored as a one-
dimensional array in the sweep direction. The subscript [
therefore runs from 1 to .

The denivative of 7 with respect to pw, stored as a one-

dimensional array in the sweep direction. The subscript [
therefore runs from 1 to V.

Dimensional reference energy, p,u2.

Total energy at time level 2.

Total energy at previous or intermediate time level.
Reference ratio of specific heats, G lc, .

Dimensional proportionality factor in Newton’s second law,
either 32.174 Ib, -ft/lb,-sec?, or 1.0 kg-m/N-sec?,

Stagnation enthalpy used with constant stagnation enthalpy
option.

Dimensional stagnation enthalpy used with constant stag-
nation enthalpy option.

Parameter specifying which variables are being supplied as
initial conditions by subroutine INIT.

Flag for Euler calculation option; 0 for a full time-averaged
Navier-Stokes calculation, 1 for an Euler calculation.

Flag set by method used to select GAMR; 0 if GAMR is de-
faulted (and hence ¢, and ¢, are functions of temperature), 1
if GAMR is specified by user (and hence ¢, and ¢, are con-
stants).

Flag for constant stagnation enthalpy option; 0 to solve the
energy equation, | to eliminate the energy equation by as-
suming constant stagnation enthalpy.

Flag for computation of laminar viscosity and thermal
conductivity; 0 for constant values, 1 for functions of local
temperature.

Flag indicating non-positive values of pressure and/or tem-
perature: 0 for no non-positive values, 1 for some.

Flag for swirl in axisymmetric flow; 0 for no swirl, 1 for swirl.
Flags for thin-layer option; 0 to include 2nd. derivative
viscous terms, | to eliminate them. The subscript [=1 or 2,
corresponding to the ¢ and » directions, respectively.

Effective thermal conductivity coefficient at time level 7. This
is a type REAL variable.

Reference thermal conductivity coefficient. This is a type
REAL variable.

PROTELUS 2-D Programmer’s Reference

LA(IL12)

LR

MACHR

MU(I1,12)

MUR

MUT(11,12)

P(I1,12)
PR

PRLR

PRR

RER

RG
RGAS
RHO(I1,12)
RHOL(I1,12)
RHOR
T(11,12)
TL(I1,12)
TR
U(IL,12)
UL(11,12)

UR
V(I1,12)

VI(IL,12)

W(I1,12)

“/

He

p’

Pr,,

Pr,

Re

r

|

SN

1N

PROTELS 2-D Programmer’s Reference

Effective second coefficient of viscosity at time level a (usually
assumed equal to — 2u/3.) This is a type REAL vanable.

Dimensional reference length. This is a type REAL vanable.

Reference Mach number, 1/(y,R T)"2. This is a type REAL
variable.

Effective viscosity cocfficient at time level n. This is a type
REAL vanable.

Dimensional reference viscosity coefficient. This is a type
REAL variable.

Turbulent viscosity coefficient at time level n. This 1s a type
REAL variable.

Static pressure at time level 7.
Dimensional reference static pressure, o RT)|g..

Reference laminar Prandtl number, Cp,y,/k,, where
¢, =v.RIG, — 1)

Reference Prandtl number, p w2k T,.

Reference Reynolds number, p,uL,/u,.
Dimensional gas constant.

Nondimensional gas constant.

Static density at time level 7.

Static density at previous or intermediate time level.
Dimensional reference density.

Static temperature at time level n.

Static temperature at previous or intermediate time level.
Dimensional reference temperature.

Velocity in the Cartesian x direction at time level 2.

Velocity in the Cartesian x direction at previous or interme-
diate time level.

Dimensional reference velocity.

Velocity in the Cartesian y direction or cylindrical r direction
at time level n.

Velocity in the Cartesian y direction or cylindrical r direction
at previous or intermediate time level.

Swirl velocity at time level 7.

Variables Listed by Block 47

WL(I1,12)

Common Block GMTRY]1

Swirl velocity at previous or intermediate time level.,

This common block contains variables used to determine the geometric configuration being analyzed.

Fortran
Variable Symbol
* JTAXI
IGINT()
* NGEOM
* RMAX 7 rax
* RMIN Frin
* THMAX 0 e
* THMIN 0,
* X:\l[\x xmax
* XMIN Xonin
* Y’NL‘\X ymux or rmax
* YMIN yml’l Or rmm

Common Block IC1

Definition

Flag for two-dimensional planar or axisymmetric flow; 0 for
two-dimensional planar, | for axisymmetric.

Flags for grid interpolation requirement; 0 if interpolation is
not needed, 1 if interpolation is needed. The subscript [= 1
to 3, corresponding to the ¢, n, and { directions, respectively.
Flag used to specify type of computational coordinates; 1 for
Cartesian (x,p) coordinates, 2 for polar (¥ ,8") coordinates, and
10 to read the coordinates from unit NGRID.

Maximum ¢ coordinate for polar grid option.

Minimum #* coordinate for polar grid option.

Maximum ¢’ coordinate in degrees for polar grid option.
Minimum 6’ coordinate in degrees for polar grid option.
Maximum x coordinate for Cartesian gnd option.

Minimum x coordinate for Cartesian grid option.

Maximum p or r coordinate for Cartesian or cylindrical grid
option.

Minimum y or r coordinate for Cartesian or cylindrical grid
option.

This common block contains variables used in setting up the initial conditions in subroutine INIT. For
the version of INIT suppliecd with PROTEUS, these variables specify the properties of an initial uniform

It is anticipated that, for user-supplicd versions of subroutine I NIT, the user will need to change

Definition

Initial static pressure.

Initial static temperature.

Initial velocity in the Cartesian x direction.

Initial velocity in the Cartesian p direction or cylindrical r di-
rection.

flow field.
the contents of this common block and of namelist IC.
Fortran
Vanable Symbol
* PO
* ToO Ts
* Lo 4,
* Vo A
WO Wy

48 Variables Listed by Block

[nitial swirl velocity.

PROTEUS 2-D Programmer’s Reference

Common Block 101

This common block contains variables dealing with input, output requirements.

Fortran
Vanable

+ IDEBUG(D)

* IPLOT
* IPLT

*+ IPLTA)

* IPRT

+ IPRTA(D)

* IPRTI

* IPRT2

+ IPRTIA(I)

* IPRT2A(D

+ [UNITS
£ IVOUT(D)
+ NGRID
+ NHIST

* NHMAX

NIN
* NOUT
* NPLOT

PROTELUS 2-D Programmer’s Reference

Definition
A 20-clement array of flags specifying various debug options.

Flag controlling the creation of an auxiliary file, usually called
a “plot file”, used for later post-processing.

Results are written into the plot file every IPLT time levels.
Time levels at which results are written into the plot file. The
subscript I =1 to 101, the maximum number of time levels
that may be written.

Results are printed every IPRT time levels.

Time levels at which results are printed. The subscript 1 =1
to 101, the maximum number of time levels that may be

printed.

Results are printed at every IPRT1'th mesh point in the ¢
direction.

Results are printed at every IPRT2'th mesh point in the »
direction.

¢ indices at which results are printed. The subscript I =1 to
2 maximum of N1, the number of grid points in the ¢ direc-
tion.

y indices at which results are printed. The subscript I =1 to
a maximum of N2, the number of grid points in the » direc-

tion.

Flag for type of units used to specify reference conditions;
0 for English units, 1 for SI units.

A 50-clement array specifying which variables are to be
printed.

Unit number for reading grid file.

Unit number for writing convergence history file.

Maximum number of time levels allowed in the printout of
the convergence history file (not counting the first two, which
arc always printed.)

Unit number for reading namelist input.

Unit number for writing standard output.

Unit number for writing CONTOUR or PLOT3D Q plot file.

Variables Listed by Block 49

* ONPLOTX

Connen fL:'.w_’-’}w\vrl-!-fI‘Rl(v;‘l_

Unit number for writing PLOT3D XY plot file.
Total number of indices for printout in the ¢ direction.
Total number of indices for printout in the n direction.

Unit number for scratch file in subroutine PLOT.

Lo vosmon block contams the mictrie cocfficients and inverse Jacobian desenbing the nonorthogonal
erid tran bomation, plus the Cartesian coordinates of cach gnd point. The two-dimensional varables in
thits common block are equivalenced to corresponding one-dimensional variables. This is done for the same

wand i the same manner as described previously for several variables in common block I'L.OW].

Portran

Varable Symbol
EIATEY) 0,
ETAXILI) N,
FTAY(L,12) N, Or 1,
JIILI2) J Yorrt
METT(IV.D ¢, or g,
METXV.]D ¢ oorm,
METY(IV,D §,ory,
RAN(D) lorr

S Variables Listed by Block

Definition

The denvative of the computational coordinate n with respect
to untransformed time ¢.

The derivative of the computational coordinate i with respect
to the Cartesian coordinate x.

‘The denvative of the computational coordinate n with respect
to the Cartesian coordinate y or cylindrical coordinate .

Normally the inverse Jacobian of the non-orthogonal grid
transformation. For the COEF routines in axisymmetric
flow, it is temporanly redefined as the product of the local
radius and the inverse Jacobian. This is a type REAL van-

able.

The derivative of the computational coordinate in the ADI
sweep direction with respect to untransformed time ¢, 1 is the
gnd index in the sweep direction, running from 1 to N. IV is
the grid index in the “vectorized” direction (i.c., the non-sweep
direction in which the “BLLK” routines are vectorized), and
runs from 2to N, — 1. This is a type REAL variable.

The derivative of the computational coordinate in the ADI
sweep direction with respect to the Cartesian coordinate x. |
is the grid index in the sweep direction, running from 1 to V.
IV 1s the grid index in the “vectorized” direction (i.c., the
non-sweep direction in which the “BLK” routines are
vectorized), and runs from 2to N, — 1. This is a type REAL
variable.

The derivative of the computational coordinate in the ADI
sweep direction with respect to the Cartesian coordinate y or
cylindrical coordinate 7. I is the grid index in the sweep di-
rection, running from 1 to N. IV is the gnd index in the
“vectorized” direction (i.c., the non-sweep direction in which
the “BLK” routines are vectorized), and runs from 2 to
N, — 1. This is a type REAL variable.

I for two-dimensional planar flow, and the local radius 7 for

axisymmetric flow. [is the grid index in the sweep direction,
running from 1 to N.

PROTELUS 2-D Programmer’s Reference

X(11,12)

XIT(I1,12)

XIX(11,12)

XIY(I1,12)

Y(11,12)

Common Block NUMI

This common block contains v

solve the equations.

Fortran
Varable

A(IV,LJ.K)

ALPHA

* ALPHA!I

* ALPHA2

B(IV,LJ,K)

C(IV,LIK)

PROTEUS 2-D Programmer’s Reference

S

¢, or ¢,

yorr

Symbol
A

&)

&

Cartesian x coordinate.

The derivative of the computational coordinate ¢ with respect
to untransformed time .

The derivative of the computational coordinate ¢ with respect
to the Cartesian coordinate x.

The derivative of the computational coordinate ¢ with respect
to the Cartesian coordinate y or cylindrical coordinate .

Cartesian y coordinate or cylindrical r coordinate.

ariables dealing with various aspects of the numerical method used to

Definition

Subdiagonal submatrix of coefficients at gnd point I in the
block tridiagonal coefficient matrix. I is the grd index in the
sweep direction, running from 1to N. IV is the grid index in
the “vectorized” direction (i.e., the non-sweep direction in
which the “BI.K” routines are vectorized), and runs from 2 to
N, — 1. The subscript J =110 N, corresponding to the N,
coupled governing cquations, and K = 1to N,,, corresponding
to the N,, dependent variables.

Difference centering parameter for first derivatives in the ADI
sweep direction.

Difference centering parameter for & direction first derivatives.
ALPHAL = 0.0, 0.5, or 1.0 corresponding to forward, central,
and backward differences, respectively.

Difference centering parameter for » direction first derivatives.
ALPHA2 = 0.0, 0.5, or 1.0 corresponding to forward, central,
and backward differences, respectively.

Diagonal submatrix of coefficients at grid point I in the block
tridiagonal coefficicnt matrix. 1 is the grid index in the sweep
direction, running from 1 to N. [V is the grid index in the
~vectorized” direction (i.e., the non-sweep direction in which
the “BL.K” routines are vectorized), and runs from 2 to
N, — 1. The subscript J =1 to N, corresponding to the N,
coupled governing equations, and K = 1to N,,, corresponding
to the N,, dependent variables.

Superdiagonal submatrix of coefficients at grid point I in the
block tridiagonal coefficient matrix. [is the gnd index in the
sweep direction, running from 1 to N. 1V is the grid index in
the “vectorized” direction (i.e., the non-sweep direction in
which the “BLK” routines are vectorized), and runs from 2 to
N, — 1. The subscript J=1to N, corresponding to the N,
coupled governing equations, and K = 1to N,,, corresponding
to the N,, dependent variables.

Variables Listed by Block 51

* CAVS2E(D)

+ CAVS2I(])

¥ CAVS4E(D)

DEL
DETA
DXI

* IAVZE

* 1AV2]

* IAV4E

IBASE

+ IPACK(])

ISTEP

ISWEEP

v

@ or «,

e® or x,

A& or Ay
Ay

Ag

52 Variables Listed by Block

Second-order explicit artificial viscosity coefficient in constant
coetficient model, or user-specified constant in nonlinear co-
efficient model. The subscript 1 =1 to N,,, corresponding to
the N,; coupled governing equations.

Second-order implicit artificial viscosity coefficient in constant
coefficient model. The subscript I =1 to N.,,, corresponding
to the N, coupled governing equations.

Fourth-order explicit artificial viscosity coefficient in constant
coefficient model, or user-specified constant in nonlinear co-
efficient model. The subscript [= 1 to N,, corresponding to
the V,, coupled governing equations.

Computational grid spacing in the ADI sweep direction.
Computational grid spacing in the » direction.
Computational grid spacing in the ¢ direction.

Flag for second-order explicit artificial viscosity; 0 for none, 1
for constant coefficient model, 2 for nonlincar coefficient

model.

Flag for second-order implicit artificial viscosity; 0 for none,
1 for constant coefficient model.

Flag for fourth-order explicit artificial viscosity; 0 for none, 1
for constant coefficient model, 2 for nonlinear coefficient
model.

Base index used with ISTEP to compute one-dimensional
index for two-dimensional array. Then, for example, for any
sweep U(11,12) = UI(IBASE + ISTEP*(I — 1)) where I is the
grid index in the sweep direction.

Flags for grid packing option; 0 for no packing, 1 to pack
points as specified by the input array SQ. The subscript
[=1 or 2, corresponding to the ¢ and 4 directions, respec-
tively.

Multiplication factor used with IBASE to compute one-
dimensional index for two-dimensional array.

Flag specifying ADI sweep direction; 1 for ¢ direction, 2 for
n direction.

Grid point index in the “vectorized” direction (i.e., the non-
sweep direction in which the “BLK” routines are vectorized).
Therefore, IV = for the first sweep and i for the second
sweep.

Grid point index in the ¢ direction,

Grid point index in the y direction.

Array index associated with the continuity equation.

Array index associated with the energy equation.

PROTELS 2-D Programmer’s Reference

NEQ N

q

NET
NPTS N

NPT N oor N+ 1

NPT2 Nyor N, + 1

NR
NRU
NRV
NRW

NV N

NXM

NYM

NZM
+ NI N,
+ N2 N,

S(IV,1.J) S

* SQULDY

+ THC() 9, 6,

+ THE(I) 9, 0, 6,

PROTELS 2-D Programmer’s Reference

The number of coupled governing equations actually being
solved.

Array index associated with the dependent variable Er.

The number of ¢grid points in the sweep direction.

The number of grid points in the ¢ direction used in com-
puting coefficients: N, for non-periodic boundary conditions;
N, + 1 for spatially periodic boundary conditions.

The number of grid points in the » direction used 1In com-
puting coefficients: N, for non-periodic boundary conditions;
N, + 1 for spatially periodic boundary conditions.

Array index associated with the dependent variable p.

Array index associated with the dependent variable pu.

Array index associated with the dependent variable pv.

Array index associated with the dependent variable pw.

The number of grid points in the “vectorized” direction (i.e.,
the non-sweep direction in which the “BLK” routines are
vectorized). Therefore, NV = N, for the first sweep and N, for
the second sweep.

Array index associated with the x-momentum equation.
Array index associated with the y or 7-momentum equation.
Array index associated with the swirl momentum equation.
The number of grid points in the ¢ direction.

The number of grid points in the » direction.

Subvector of source terms at grid point I in the block
tridiagonal system of equations. I is the grid index in the
sweep direction, running from 1 to N. IV is the grid index in
the “vectorized” direction (i.e., the non-sweep direction in
which the “BLK” routines are vectorized), and runs from 2 to
N, — 1. The subscript J=1to N,,, corresponding to the N,,
coupled governing equations.

An array controlling the packing of grid points using the
Roberts transformation. The subscript I=1 or 2, corre-
sponding to the ¢ and # directions, respectively. SQ(I,1)
specifies the location of packing, and SQ(I,2) specifies the
amount of packing.

A two-clement array specifying the time difference centering
parameters used for the continuity equation.

A three-element array specifying the time difference centering
parameters used for the energy equation.

Variables Listed by Block 53

* THX(D) 8, 6, 0, A three-element array specifying the time difference centering
parameters used for the x-momentum equation.

* THY(() 8,, 8, 0, A three-clement array specifying the time difference centering
paramcters used for the y or -momentum equation.

* THZ(D 0,, 0, 0, A three-element array specifying the time difference centering
parameters used for the swirl momentum equation.

Common Block RSTRTI

This common block contains variables controlling the use of the restart option.

Fortran
Vanable Symbol Definition
* IREST Flag controlling the reading and writing of auxiliary files used
for restarting the calculation in a separate run.
* NRQIN Unit number for reading restart flow ficld.
* NRQOUT Unit number for writing restart flow ficld.
* NRXIN Unit number for reading restart computational mesh.
* NRXOUT Unit number for writing restart computational mesh.

Common Block TIMEL|

This common block contains variables dealing with time step sclection and convergence determination.
The two-dimensional array DTAU is equivalenced to a corresponding one-dimensional array DTAUI, as
described previously for variables in common blocks FLOW1 and METRICI.

Fortran
Variable Symbol Definition
* CFL(D) The ratio Ar/Ar,, where At is the actual time step used in the
implicit calculation and Az, is the allowable time step based
on the Courant-Fricdrichs-Lewy (CFL) criterion for explicit
methods. [is the time step sequence number, and runs from
1 to N'TSEQ.
* CFLMAX Maximum allowed value of the CFL number.
* CFLMIN Minimum allowed value of the CFL number.

CHGAVG(D) AQ,,, Maximum change in absolute value of the dependent varni-
ables, averaged over the last NITAVG time steps. The sub-
seript I=1 to N,, comesponding to the N,, dependent
vanables.

CHGMAX(L)) AQ,.. Maximum change in absolute value of the dependent variables

over a single time step.® The subscript =1 to N, corre-
sponding to the N, dependent variables, and J=1 to

5 For the energy equation, the change in Ey is divided by Er = p.RT |y, - 1) 4+ u?/2, so that it is the same order
of magnitude as the other conservation variables.

54 Variables Listed by Block PROTELS 2-D Programmer’s Reference

+ CHGI

< CHG2

+ DT(At
DTAUILI2) At

+ DI

£ DT

+ DTMAX

* DTMIN

+ EPS(I) ¢

* ICHECK

ICONV
* ICTEST
* IDTAU
* IDTMOD

I'T n

ITBEG

ITEND
[1SEQ

[RMAX(ILLK)

* NDTCYC

PROTELUS 2-D Programmer’s Reference

NITAVG, the number of time steps used in the moving av-
erage option for determining convergence.

Minimum change, in absolute value, that is allowed in any
dependent variable before increasing the time step.

Maximum change, in absolute value, that is allowed in any
dependent variable before decreasing the time step?

The time step size, when specified directly as input. | 1% the
time step sequence number, and runs from 1 to NTSEQ.

Computational time step size.

Factor by which the time step is multiplied if the solution
changes too slowly.

Factor by which the time step is divided i the sobuticn
changes too quickly.

Vaximum value that Az is allowed to reach, or the maxinum
Az used in the time step cycling procedure.

Minimum value that At is allowed to reach, or the M
At used in the time step cycling procedure.

Convergence level to be reached. The subsceript T=1to V|
corresponding to the N, dependent variables.

Results are checked for convergence every ICHECK th time
level.

Convergence flag; 0 if not converged, 1if converged.

Flag for convergence criteria to be used.

[lag for time step selection method.

The time step size is modified every IDTMODth time step.

Current time stcp number, or known time level. Time step
number 7 updates the solution from time level nto n+ 1.

The time time step number, or known time level n, at the
beginning of a run. For a non-restart case, I'BEG = 1.

The final time step number.
Current time step sequence number.

The grid indices corresponding to the location of the maxi-
mum absolute value of the residual. The subscript 1= 1 or
2, corresponding to the ¢ and 5 directions, respectively, J =1
to ,,. corresponding to the .V, coupled governing equations,
and K =1 or 2, corresponding to the residual computed
without and with the artificial viscosity terms.

Number of time steps per cycle used in the time step cycling
procedure.

Variables Listed by Block 55

* NITAVG Number of time steps used in the moving average convergence
test.

¥ ONTIME(D Maximum number of time steps to march. I runs from | to
NTSEQP, corresponding to the time step sequence number.

* NTSEQ The total number of time step sequences being used.
RESAVG(I K) R, The average absolute value of the residual for the previous
time step. The subscript J = 1 to N,,, corresponding to the

N,, coupled governing cquations, and K =1 or 2. corre-
sponding to the residual computed without and with the arti-
ficial viscosity terms.

The 1, norm of the residual for the previous time step. The
subscript J = 1 to A, , corresponding to the N,, coupled gov-
erning equations, and K = 1 or 2, corresponding to the resi-
dual computed without and with the artificial viscosity terms.

RESL2(J.K) R,

RESMAX(J,K) R, The maximum absolute value of the residual for the previous
time step. The subscript J =1 to N,,, corresponding to the
N,, coupled governing equations, and K =1 or 2, corre-
sponding to the residual computed without and with the arti-
ficial viscosity terms.

TAU(1,12) T Current value of the time marching parameter.

Common Block TITLE!

This common block contains a descriptive title for the case being run.

FFortran
Variable Symbol Definition
* TITLE Title for printed output and CONTOUR plot file, up to 72

characters long. This is a type CHARACTER variable.

Common Block TURBI

‘This common block contains turbulence model constants, plus flags and parameters used for turbulent
flow calculations.

Fortran
Varnable Symbol Definition

* APLLS A Van Driest damping constant in the inner and outer regions
of the Baldwin-Lomax turbulence model.

* CB B Constant used in the formula for the Klebanoff intermittency
factor Fy,, in the outer region of the Baldwin-1.omax turbu-
lence model, and in the inner region of the Spalding-
Kleinstein turbulence model.

* CCLAU K Clauser constant used in the outer region of the Baldwin-
Lomax turbulence model.

* CCP C Constant used in the outer region of the Baldwin-Lomax tur-

bulence model.

56 Variables Listed by Block PROTEUS 2-D Programmer’s Reference

CKLEB

CNA

CNL

CVK

CWK

ILDAMP

INNER
ITETA

ITURB

ITXI

IWALLI(I)

IWALL2(])

LWAKEI

LWAKE?2

PRT

REXTI

REXT?2

CK leb

ka

Pr,

Re

Xer

Xtr

PROTEUS 2-D Programmer’s Reference

Constant used in the formula for the Klebanoff intermittency
factor Fy,, in the outer region of the Baldwin-L.omax turbu-
lence model.

Exponent in the formula used to average the two outer region
u, profiles that result when both boundaries in a coordinate
direction are solid surfaces.

Exponent in the Launder-Priddin modified mixing length
formula for the inner region of the Baldwin-Lomax turbulence
model.

Von Karman mixing length constant used in the inner region
of the Baldwin-Lomax and Spalding-Kleinstein turbulence
models.

Constant used in the formula for F,,, in the outer region of
the Baldwin-Lomax turbulence model.

Flag for the Launder-Priddin modified mixing length formula
in the inner region of the Baldwin-Lomax turbulence model.

Flag for type of inner region turbulence model.
Flag for computing turbulent viscosity on constant n lines.

IFlag for turbulent flow option; 0 for laminar flow, 1 for tur-
bulent flow using the Baldwin-Lomax algebraic turbulence
model.

Flag for computing turbulent viscosity on constant ¢ lines.

Flags indicating type of surfaces in the ¢ direction; 0 for a free
boundary, 1 for a solid wall. The subscript I = | or 2, corre-
sponding to the ¢ =0 and ¢ =1 surfaces, respectively.

Flags indicating type of surfaces in the # direction; 0 for a free
boundary, 1 for a solid wall. The subscript I =1 or 2, corre-
sponding to the # = 0 and # = 1 surfaces, respectively.

Grid point index in the ¢ direction used as the origin for
computing length scales for free turbulent flows.

Grid point index in the » dircction used as the origin for
computing length scales for free turbulent flows.

Turbulent Prandtl number, or, if non-positive, a flag indicat-
ing the use of a variable turbulent Prandtl number.

Reynolds number at the beginning of the transition region,
based on maximum total velocity and distance from ¢ = 0, for
flow predominantly in the ¢ direction with a leading edge at
£=0.

Reynolds number at the beginning of the transition region,
based on maximum total velocity and distance from 5 = 0, for
flow predominantly in the » direction with a leading edge at
n=0.

Variables Listed by Block 57

VORT(11,12) , Q ' Total vorticity magnitude.

58 Variables Listed by Block PROTELS 2-D Programmer’s Reference

4.0 PROTEUS SUBPROGRANMIS

In this section, each subprogram in PROTELS is described, first in summary, then in detail. The
summary is simply a list of the subprograms with a brief description of the purpose of cach one. The de-
tailed description includes, for each subprogram, a list of the subprograms that reference it, and a list of the
subprograms that it references. The Fortran variables that are input to and output from each subprogram

are defined. And finally, details of the computations being done within each subprogram are presented.

4.1 _SUBPROGRAM SUMNMARY

The following table presents a brief description of the purpose of each subprogram in the PROTEUS

code.

PROTEUS Subprogram Summary

Subprogram Purpose

ADI Manage the block tridiagonal inversion.

AVISClI Compute constant coefficient artificial viscosity.

AVISC2 Compute nonlinear coefficient artificial viscosity.

BCDENS Computc density boundary conditions.

BCELIM Eliminate off-diagonal coefficient submatrices resulting from
three-point boundary conditions.

BCF Compute user-written boundary conditions.

BCFLIN User-supplied routine for linearization of user-supplied boundary
conditions.

BCGEN Manage computation of boundary conditions.

BCGRAD Compute gradients with respect to ¢ and #.

BCMET Compute various metric functions for normal gradient boundary
conditions.

BCPRES Compute pressure boundary conditions.

BCQ Compute conservation variable boundary conditions.

BCSET Set vanious boundary condition parameters and flags.

BCTEMP Compute temperature boundary conditions.

BCUVEL Compute x-velocity boundary conditions.

BCVDIR Compute normal and tangential velocity boundary conditions.

BCVVEL Compute y or r-velocity boundary conditions.

BCWVEL Compute swirl velocity boundary conditions.

BLIN1 Compute inner layer turbulent viscosity along constant ¢ lines.

BLIN2 Compute inner layer turbulent viscosity along constant » lines.

BLOCK DATA | Set default values for input parameters, plus a few other parame-
ters.

BLKOUT Print coefficient blocks at specified indices in the ¢ and y di-
rections.

BLK3 Solve 3x3 block tridiagonal system of equations.

PROTELS 2-D Programmer’s Reference

PROTELS Subprograms

59

PROTEUS Subprogram Summary

Subprogram Purpose

BI.K3P Solve 3x3 penodic block tndiagonal system of equations.

BLK4 Solve 4x4 block tridiagonal system of equations.

BLK4P Solve 4x4 peniodic block tridiagonal system of equations.

BIL.K5 Solve 5x5 block tridiagonal system of equations.

BILK5P Solve 5x5 periodic block tridiagonal system of equations.

BLOUTI Compute outer layer turbulent viscosity along constant ¢ lines.

BI.OUT?2 Compute outer layer turbulent viscosity along constant 5 lines.

BVUP Update first sweep boundary values after second sweep.

COLFC Compute coefficients and source terms for the continuity ecquation.

COLFE Compute cocfficients and source terms for the energy equation.

COEFX Compute cocfficients and source terms for the x-momentum
equation.

COLYFY Compute coefficients and source terms for the y or -momentum
cquation.

COLEIZ Compute coefficients and source terms for the swirl momentum
equation.

CONV Test computed flow ficld for convergence.

CuUBIC Interpolation using Ferguson’s parametric cubic.

LEQSTAT Use equation of state to compute pressure, temperature, and their
denivatives with respect to the dependent varables.

EXEC Manage solution of governing equations.

FILTER Rearrange rows of the boundary condition coefficient submatrices
and the source term subvector to eliminate any zeroes on the di-
agonal.

FTEMP Compute auxiliary variables that are functions of temperature.

GLEOM Manage computation of grid and metric parameters.

INIT Get user-defined initial flow field.

INITC Set up consistent initial conditions based on data from INIT.

INPUT Read and pnnt input, perform various initializations.

ISAMAX Find the first index corresponding to the largest absolute value of
the elements of an vector. This is a Cray BLAS routine.

ISAMIN Find the first index corresponding to the smallest absolute value
of the elements of an vector. This is a Cray extension to the BLAS
routines.

MAIN Manage overall solution.

MLETS Compute metncs of nonorthogonal gnd transformation.

ouTrPUT Manage printing of output.

PAK Manage packing and/or interpolation of grid points.

PERIOD Define extra line of data for use in computing coefficients for spa-
tially peniodic boundary conditions.

PLOT Write files for post-processing by CONTOUR or PLOT3D plot-
ting programs.

PRTHST Print convergence history.

PRTOUT Print output.

60 PROTEUS Subprograms PROTEUS 2-D Programmer’s Reference

PROTEUS Subprogram Summary

Subprogram Purpose

RESID Compute residuals and write convergence history file.

REST Read and/or wnte restart file.

ROBTS Pack points along a line using Roberts transformation.

SASUM Compute the sum of the absolute values ot the elements of a vec-
tor. This is a Cray BLLAS routine.

SGEFA Factor a matrix using Gaussian climination. This 1s a Cray
I INPACK routine.

SGEST Solve the matrix equation Ax = B or ATx = B using the factors
computed by SGEFA. This is a Cray LINPACK routine.

SNRM?2 Compute the 1, norm of a vector. This is a Cray BIAS routine.

TBC Set time-dependent boundary condition values.

TIMSTP Set computational time step.

TURBBI Manage computation of turbulence parameters using Baldwin-
[.omux algebraic model.

UPDATE Update flow vanables after cach ADI sweep.

VORTEX Compute magnitude of total vorticity.

4.2 SUBPROGRAM DLETAILS

The subprograms used in PROTEUS are described in detail in the remainder of this section. A few
additional words are necessary about the input and output descriptions. The description of the mput to
cach subprogram includes all Fortran variables actually used by the subprogram that are defined outside the
subprogram. Variables defined and used inside the subprogram are not listed as input. In addition, van-
ables that are merely passed through to lower level routines are not listed. Variables marked with an asterisk
are user-speciticd namelist input variables.

Similarly, the output description includes only those variables computed inside the subprogram and used
outside the subprogram. It does not include varables computed by lower level routines. In general, van-
ables defined inside the subprogram that are used by lower level routines are listed as output, even if they
arc not needed after control is returned to the calling program.

Variables entering or leaving a subprogram through an argument list are defined in detail. However,
most of the Fortran variables listed in the input and output descriptions are contained in common blocks,
and are defined in detail in Section 3.0, For that reason, they are defined only briefly in this section.

PROTELS 2-D Programmer’s Reference PROTELUS Subprograms 61

Subroutine ADI

Called by Calls Purpose

EXEC BLKOUT Manage the block tridiagonal inversion.
BLK3
BLK3P
BLK4
BLK4P
BLKS
BLKSP

Input

* IDEBUG

* IPRTIA, IPRT2A

ISWELEP
IT
KBCPER

NEQ
* NOUT

NPRTI1, NPRT2

S
Output
None.

Description

Debug flags.

Indices for printout in the ¢ and 5 directions.
Current ADI sweep number.

Current time step number 7.

Flags for spatially peniodic boundary conditions in the £ and »
directions; 0 for non-periodic, | for periodic.

Number of coupled cquations being solved, N,,.
Unit number for standard output.

Total number of indices for printout in the ¢ and 4 directions.

Computed solution subvector, A(A)' or Aé".

For each ADI sweep, subroutine ADI calls the appropriate block solver. The choice is determined by
the number of equations being solved, and by the presence or absence of spatially periodic boundary con-

ditions in the sweep direction.

Remarks

I. This subroutine generates the output for the IDEBUG(1), IDEBUG(S), and IDEBUG(6) options.

62 PROTELS 2-D Subprograms: ADI

PROTELUS Programmer’s Reference

Subroutine AVISCI

Called by Calls Purpose
EXEC BLKOUT Compute constant coefficient artificial viscosity.
Input
A B C Coetlicient submatrices A, B, and C without artificial viscosity.
CAVS2E, CAVS4E, CAVS2I Artificial viscosity cocfficients ¢@, ¢, and e,.

DTAU
IAV2E, IAV4E, IAV2]

IDEBUG

[HSTAG

IPRTILA, IPRT2A

ISWELEP

ISWIRL

IT

JI

NC, NXM, NYM, NZM, NEN

NOUT
NPRTI, NPRT2
NPTI, NPT2

NR, NRU, NRV, NRW, NET

RHO, U, V, W, ET

S

Qutput

A, B, C
S

Time step At

Flags for second-order explicit, fourth-order explicit, and second-
order implicit artificial viscosity.

Debug flags.

Flag for constant stagnation enthalpy option.

Indices for printout in the & and i directions.

Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Current time step number 7.

Inverse Jacobian of the nonorthogonal grid transformation, /1.

Array indices associated with the continuity, x-momentum,
y-momentum (or r-momentum if axisymmetric), swirl momen-
tum, and energy equations.

Unit number for standard output.
Total number of indices for printout in the ¢ and » directions.

N, and N, for non-periodic boundary conditions, N, + 1 and
N, + 1 for spatially periodic boundary conditions in ¢ and #.

Array indices associated with the dependent variables p, pu, pv,
pw, and Eq.

Static density p, velocities u, v, and w, and total energy £ at time
level n.

Source term subvector S without artificial viscosity.

Coefficient submatrices A, B, and C with artificial viscosity.

Source term subvector S with artificial viscosity.

Description

Subroutine AVISC1 adds explicit and,or implicit artificial viscosity to the governing equations, using the
constant coefficient model of Steger (1978), as presented by Pulliam (1986b). The model is described in
Section 9.1 of Volume 1. The explicit artificial viscosity may be second and/or fourth order, and 1s added
only during the first ADI sweep. The implicit artificial viscosity is second order, and is added during both
sWeeps.

The fourth-order explicit artificial viscosity is implemented in Fortran by redefining the source term

subvector as

PROTELUS 2-D Programmer’s Reference PROTEUS Subprograms: AVISC1 63

WAz,
S, . =S, .ﬁfffjif_[(v ANQ, + (V. A)Q,]
LS g Y nont X

where 7 and j vary from 3 to NPTl — 2 and from 3 to NP2 — 2, respectively. At grid points adjacent to

boundaries the fourth-order differences in the above equation cannot be used, and therefore are replaced
by second-order differences. Thus, at i= 2 and at i= NPTl — |, with j varving from 3 to NPT2 — 2,

@)
e ATy
S, =8, 4+M[VVA Q. (v,4)°Q;]
i, j RN Jlj EOENGL nn LJ

Similanly, at j = 2 and at j = NPT2 — 1, with { varying from 3 to NPT1 — 1,

)

. . EE AT[’j 2
S, ;=8 ;+ —J”—“ [-(V:A:)°Q; ;+V,4,Q; /]

The second-order explicit artitictal viscosity 18 implemented in Fortran by redefining the source term
subvector as

Dz,
. - Ep BT v
Si; =S8+ A (V:2:Q; ;+V,4,Q;)

where i and j vary from 2 to NPTl — 1 and from 2 to NPT2 — 1, respectively.

The second-order implicit artificial viscosity for the first ADI sweep is implemented in Fortran by re-
defining the coefficient block submatrices as

SIAT[,j
r\i‘j:r\i’jATj—jim]‘j
CIATij
.=-B, .+ 22— .
B, =B +2 T i
. EIAT[J‘
‘fz,jz“i,j"T i1,

where 7 and j vary from 2 to NPTl — | and from 2 to NPT2 — 1, respectively. Similanly, for the second
sweep,

SIATI',j
A=Ay
Ji s
EIATl'j
=B 42—]
Bz,} Bz.] +e Jij Jl,j
CIATi,j
Cij=C———im
Ji

Remarks

1. The sign in front of each artificial viscosity term depends on the sign of the “i;” term in the difference
formula. See Section 9.1 of Volume 1 for details.

o

The coding to add artificial viscosity to the energy and/or swirl momentum equations is separate from
the coding for the remaining cquations, and 1s bypassed if they are not being solved.

3. The subscripts on the Fortran varables A, B, C, and S may be confusing. The first subscript is the
mdex in the non-sweep (1.e., “vectonized”) direction, and the second subscript is the index in the sweep

64 PROTELUS 2-D Subprograms: AVISC] PROTELS Programmer’s Reference

direction. For the first sweep (which includes all the explicit artificial viscosity) the order is thus (I2,I1),
and for the second sweep the order is (I11,12).

4. For spatially periodic boundary conditions in the ¢ direction, fourth-order differences could be used at
i=2and at i= NPT1~1(=,). Similarly, for the » direction, fourth-order differences could be used
at j=2and at j= NPT2— 1 (= A,). The logic to do this has not been coded, however, and at these
points seccond-order differences are still used, as described above.

5. This subroutine generates the output for the IDEBUG(2) option.

PROTEUS 2-D Programmer’s Reference PROTEUS Subprograms: AVISC1 65

Subroutine AVISC2

Called by Calls Purpose
EXEC BLKOUT Compute nonlinear coefficient artificial viscosity.
Input
A B, C Coefficient submatnces A, B, and C without artificial Viscosity.
* CAVS2E, CAVS4E, CAVS2I User-specified coefficients x,, «,, and ¢,.
CP, CV Specific heats ¢, and ¢, at time level n.
DTAU Time step Ar.

ETAX, ETAY, ETAT
* JAV2E, IAV4E, IAV2I]

* IDEBUG

* THSTAG

* IPRTIA, IPRT2A
ISWEEP

* ISWIRL
IT
JI

Metric coeflicients »,, u, (or 4, if axisymmetric), and y,.

Flags for sccond-order explicit, fourth-order explicit, and second-
order implicit artificial viscosity.

Debug flags.

Flag for constant stagnation enthalpy option.
Indices for printout in the ¢ and » directions.
Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Current time step number 7.

Inverse Jacobian of the nonorthogonal grid transformation, J-1.

NC, NXM, NYM, NZM, NEN Array indices associated with the continuity, x-momentum,

* NOUT

NPRTI, NPRT2

NPT, NPT2

y-momentum (or r-momentum if axisymmetric), swirl momen-
tum, and energy equations.

Unit number for standard output.
Total number of indices for printout in the ¢ and 5 directions.

Ny and N, for non-periodic boundary conditions, N, + | and
N3 + 1 for spatially periodic boundary conditions in ¢ and ».

NR, NRU, NRV, NRW, NET Array indices associated with the dependent variables p, pu, oV,

P, T
RGAS

RHO, U, V, W ET

S

XIX, XIY, XIT

Output

A/B,C
S

66 PROTEUS 2-D Subprograms: AVISC2

pw, and E;.
Static pressure p and temperature T at time level 7.
Gas constant R.

Static density p, velocities u, v, and w, and total-energy E; at time
level n.

Source term subvector S without artificial viscosity.

Metnc coefficients £, &, (or ¢, if axisymmetric), and ¢,

Coefficient submatrices A, B, and C with artificial viscosity.

Source term subvector S with artificial viscosity.

PROTELS Programmer’s Reference

Description

Subroutine AVISC2 adds explicit artificial viscosity to the governing equations, using the nonlinear co-
efficient model of Jameson, Schmidt, and Turkel (1981), as presented by Pulliam (1986b). The model 1s
described in Section 9.2 of Volume 1. Second-order implicit artificial viscosity can also be added, using the
constant coefficient model of Steger (1978) described in Section 9.1 of Volume 1, although this is not

normally used in combination with the explicit nonlinear coefficient model. The explicit artificial viscosity
is added only during the first ADI sweep. The implicit artificial viscosity is added during both sweeps.

The explicit artificial viscosity in the & direction is computed first, at the #- -indices j =2 to NPT2 - 1.
The spectral radius term , , and the pressure gradient scaling factor o, , are computed and stored in local
one-dimensional arrays for i = 1 to NPT1. Special formulas are used to compute o near boundaries, as
described in Section 9.2 of Volume 1.

The second-order artificial viscosity is added first, and is implemented in Fortran by redefining the source

term subvector as
‘ [v
Si,,-=5,~,,-+V§1[<7 i N) (), A Qs
i) N

) —Q,
)H—l,] " (J) :l)i’j(QH’l'j Ql'j)
¥
(7) })i Qi Qi)
The fourth-order explicit artificial viscosity is added next, and is implemented similarly by redefining the
source term subvector as

enof[(5),,0 (3), Jnpmea)

Or, after evaluating the differences,

. v v
CC [(7)z+1 . (T >:,J(°(¢4))«',1(Qf+2./ = 3Qu,+3Q, = Q)

' K %)z 7 (yf >; I](8(;))1—1,1(01%/ =3Q+3Qu = Qi)
1 -1,/

where i varies from 3 to NPT1 - 2. Special formulas are used at i =2 and at i = NPTl — 1, as described
in Section 9.2 of Volume 1.

where i varies from 2 to NPT1 — 1.

The explicit artificial viscosity in the » direction is c.omputed next, and is implemented in a manner
analogous to that just described for the explicit artificial viscosity in the § direction.

The second-order implicit artificial viscosity for the first ADI sweep is implemented in Fortran by re-
defining the coefficient block submatrices as

PROTEUS 2-D Programmer’s Reference PROTELUS Subprograms: AVISC2 67

eAT;
A=A — gy

i i, —1J
J i S T
EIATI',j
Bj=Bj+2——J;
4HJ
SIATi’j
Ci,j = Ci .I

JT Ji j i+1,j

where / and j vary from 2 to NPT1 — 1 and from 2 to NPT2 ~ I, respectively. Similarily, for the second

sweep,
EIAT"’!‘
A=A, ——2
(] i,/ Ji,j i,J—1
SIATi,j
gAT; j
C..=C . ———2 5
[i, ‘]i,j i, j+1

Remarks

1. The sign in front of cach artificial viscosity term depends on the sign of the “ij” term in the difference
formula. See Section 9.1 of Volume 1 for details.

2. The coding to add artificial viscosity to the energy and/or swirl momentum equations is separate from
the coding for the remaining equations, and is bypassed if they are not being solved.

3. The subscripts on the Fortran vaniables A, B, C, and S may be confusing. The first subscript is the
index in the non-sweep (i.e., “vectorized”) direction, and the second subscript is the index in the sweep
direction. For the first sweep (which includes all the explicit artificial viscosity) the order is thus (12,11),
and for the second sweep the order is (11,12).

4. For spatially periodic boundary conditions, the need for special formulas near boundaries could be
eliminated. The logic to do this has not been coded, however.

5. 'T'his subroutine generates the output for the IDEBUG(2) option.

68 PROTELUS 2-D Subprograms: AVISC2 PROTEUS Programmer’s Reference

Subroutine BCDENS (IBC,FBC.IEQ,IMIN,IMAX,IBOUND)

Called by Calls Purpose
BCGEN BCGRAD Compute density boundary conditions.
BCMET
Input
DEL, Computational grid spacing in sweep direction.

IBASE, ISTLP

IBC, I'BC

IBOUND

110
TMIN, IMAX
ISWEEDP
v
J1
* NOUT
NR
RHO

QOutput

ABC

Description

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Boundary condition types and values for current sweep direction,
specified as IBC(1,)) and FBC(LJ), where T runs from 1 to N,
corresponding to the N, conditions needed, and J =1 or 2, cor-
responding to the lower and upper boundanes.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.
Current ADI sweep number.

Index 1n the “vectonzed” direction, i,

Inverse Jacobian of the nonorthogonal grid transformation, J 1.
Unit number for standard output.

Array index associated with the dependent vanable p.

Static density p at time level 2.

Coefficicnt submatrices A, B, and C at boundary IBOUND (row
[EQ only).

Source term subvector § at boundary IBOUND (element TEQ
only).

Subroutine BCDENS computes coefficients and source terms for density boundary conditions. The
lincarized equations for the various general types of boundary conditions are developed in Section 7.0 of
Volume 1. The following sections apply these generalized equations to the particular density boundary

conditions in PROTELUS.®

5 In the following description, for the first ADI sweep the dependent variable should have the superscript *, repres-
enting the intermediate solution, and for the second ADI sweep it should have the superscript n, representing the
final solution. For simplicity, however, only the superscript 7 is used. The superscripts on all other variables are

correct as written.

PROTEUS 2-D Programmer’s Reference PROTEUS Subprograms: BCDENS 69

No Change From [nitial Conditions, Ap = 0

Applying equation (7.3) of Volume 1, and noting that 6g/@6 = J0g/0Q, we get simply
J; jAp ;=0

LT

Specified Static Density, p = f

Applying equation (7.5) of Volume 1,

An _ en+l n
JijBPyj =1 —Pij

Specified Two-Point Density Gradient in Coordinate Direction, 0p|0¢ = [

Applying equation (7.8) of Volume I at the { = 0 boundary, and using two-point one-sided differencing,
1
=J1, 8P j+ 5,805 ;= (AOST + o1 = 05
At the ¢ = 1 boundary,
A +1
—J-‘Vl -1/ APT{;} —1,j + JN]J As?vl-j = (Aflf"chj + pg{l -1,; " 'D';Vl-j

Analogous equations can easily be written for the » boundaries.

Specified Three-Point Density Gradient in Coordinate Direction, 8p[d¢ = [

~ Applying equation (7.8) of Volume [at the ¢ = 0 boundary, and using three-point one-sided differenc-
ing,

A A +1
=3/, ;AP + 40y jApy = I3 ;AR = 2AAHT + 3pY ;=403 j+p3
At the £ = | boundary,
An AR AR n+l n n n
TNy 28PN, 2, = My 1, jBPN, 1 My RN, = 2NN — Py ot 4o 1 3PN,
Analogous equations can easily be written for the » boundaries.

Specified Two-Point Density Gradient in Normal Direction, Vp e n = f

Applying equation (7.12a) of Volume 1 at the ¢ =0 boundary, and using two-point onc-sided differ-
encing,

A& Exne+Emy)y
An An 5 n+1 Yy, n n n
APt 8= T [fu‘ - oy Sy j |t P1 T P

where
f.2 .2
m=/&+ ¢,

and 4, is the variably centered difference operator presented in Section 6.0 of Volume 1. At the & =1
boundary,

n

(éx’lx + é)”’)’)f\'l,f n n
- nPNL | T PN, =1, T PN

my,,

A
An An . n+l
I8P 1 8PN = T [

70 PROTELS 2-D Subprograms: BCDENS PROTELUS Programmer’s Reference

Analogous equations can easily be written for the » boundaries.

Specified Three-Point Density Gradient in Normal Direction, Vpsn=f

Appl)’iﬂg equation (7.12a) of Volume 1 at the { = 0 boundary, and using three-point one-sided differ-
encing,

~3Jy ;ARY j+ 40y ;AR ;- J3 ;B3 ;=

2A¢8 n+1 (Exnx+ :yn)’)]’/' n n n n
oW [fu - e R VR E TR e

where

—
m=¢ﬁ+£

and 6, is the variably centered difference operator presented in Section 6.0 of Volume 1. At the £=1
boundary,

An An An
Ty, =2, 8% 2.5 = w1, 8P, <1t M AP, =

2A¢ n+1 (éx’?x'*' 5)’"}’)‘\"1:/' 5 0" n +4 n 3 n
/:\'1-1' - mNhj r)le,j —le -2, p‘vl_lvj— le,j

Analogous equations can easily be written for the » boundaries.

Linear Extrapolation of Static Density

Applying equation (7.14) of Volume 1 at the & = 0 boundary,
Jy 0P~ 20y APy j+ I3, BP3 = —pt 4205 - 03,
At the & = | boundary,
Ty, 2,780, <25~ YN 1, APy, -1, Ing,j BPN,)= ~p, —2.j 7t 200, —1,5 PN
Analogous equations can easily be written for the » boundanes.

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. An error message is generated and execution is stopped if a non-existent density boundary condition is
specified.

PROTEUS 2-D Programmer’s Reference PROTELUS Subprograms: BCDENS 71

Subroutine BCELIM

Called by Calls Purpose
EXEC SGEFA Eliminate off-diagonal coefficient submatrices resulting from three-
SGESL point boundary conditions.]
Input

AB C Coetlicient submatrices A, B, and C before elimmating off-
diagonal blocks.

IBCELM Flags for elimination of off-diagonal cocfficient submatrices re-
sulting from three-point boundary conditions in the ¢ and 5 di-
rections at either boundary; 0 if clinination is not necessary, 1if
it 1s.

ISWELP Current ADI sweep number.

Iv Index in the “vectorized” direction, i

NEQ Number of coupled equations being solved, Noo-

NEQP Cray PARAMETER specifying maximum number of coupled
equations allowed.

NPTS Number of grid points in the sweep direction, N,

S Source term subvector S before eliminating off-diagonal blocks.

Output

A B, C Cocflicient submatrices A, B, and C after eliminating off-
diagonal blocks.

S Source term subvector § after eliminating off-diagonal blocks.

Description

Subroutine BCELIM eliminates the off-diagonal coefficient submatrices that result from the application
of three-point boundary conditions. This is necessary when three-point gradients are specified in the coor-
dinate or normal direction, and when linear extrapolation is used. The procedure is described in Section
8.2.1 of Volume 1.

Remarks

1. Subroutines SGEFA and SGESL are Cray LINPACK routines. In general terms, if the Fortran arrays
A and B represent A and B, where A is a square N by N matrix and B is a matrix (or vector) with
NCOL columns, and if the leading dimension of the Fortran array A 1s LLDA, then the Fortran se-

quence

10

CALL SGEFA (A,LDA,N,IPVT,INFO)

DO 10 J = 1,NCOL

CALL SGESL (A,LDA,N,IPVT,B(1,J),0)
CONTINUE

computes A !B, storing the result in B.

72 PROTELS 2-D Subprograms: BCELIM

PROTELUS Programmer’s Reference

Subroutine BCF (IBC,FBC,IEQ,IMIN IMAX,IBOUND)

Called by Calls Purpose
BCGEN BCFLIN Compute user-written boundary conditions.
BCGRAD
BCMET
Input
DEL Computational grid spacing in sweep direction.
IBASE, ISTEP Base index and multiplication factor used in computing one-

dimensional index for two-dimensional array.

IBC, FBC Boundary condition types and values for current sweep direction,
specified as IBC(1J) and FBC(1,J), where I runs from 1 to N,
corresponding to the N,, conditions nceded, and J =1 or 2, cor-
responding to the lower and upper boundaries.

IBOUND Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.
IEQ Boundary condition equation number.
IMIN, IMAX Minimum and maximum indices in the sweep direction.
ISWEEP Current ADI sweep number.
* ISWIRL Flag for swirl in axisymmetric flow.
v Index in the “vectorized” direction, i,.
JI Inverse Jacobian of the nonorthogonal grid transformation, J-'.
* NOUT Unit number for standard output.
NR, NRU, NRV, NRW, NET Array indices associated with the dependent vanables p, pu, pv,
pw, and F.
Output
A, B, C Cocfficient submatrices A, B, and C at boundary IBOUND (row
1EQ only).
S Sglur)cc term subvector S at boundary IBOUND (clement IEQ
only).

Description

Subroutine BCF computes cocfficients and source terms for user-written boundary conditions of the
form AF =0, F=f, F|d0¢ = f, and VF«n = f. The values of F and its derivatives with respect to the de-
pendent variables must be supplied by the user-written subroutine BCEFLIN. The linearized equations for
these types of boundary conditions are developed in Section 7.0 of Volume 1. The following sections ex-
pand these generalized equations in detail’

7 In the following description, for the first ADI sweep the dependent variables should have the superscript *, re-
presenting the intermediate solution, and for the second ADI sweep they should have the superscript n, representing
the final solution. For simplicity, however, only the superscript 7 is used. The superscripts on all other variables
are correct as written.

PROTELUS 2-D Programmer’s Reference PROTELUS Subprograms: BCF 73

No Change From [nitial Conditions, AF = ()

Applying equation (7.3) of Volume 1, and noting that 5g/@6 = Jdg|0Q, we get simply

n
aF - aF n oF A oF A or
J,j[aAp + @(pu) A(pll) +mA(p¥') +WA(pW) aF A['T:Ilj= 0

Specified Value, F = f

Applying equation (7.5) of Volume I,

J,-,j[O Ap+-2F_ Aoy + Ay + =25 aqow) + ;f A/;T]_ —
l

op T apwy () Apw)

Specified Two-Point Gradient in Coordinate Direction, oF|o¢p = f

Applying equation (7.8) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differencing,

n
aF oF n oF A oF A oF A
=i, [Ap + Alpu) + Apv) + Aow) A(pw) + OET AET:LJ +

dp Ipu) o(pv)
n
OF OF \lhy OF ~0 3F oA 3
JZ,j[5/7 AP + a(u) A(pu) + a(pV) A(Pv) + a(pw) A(pW) aET AfT:L ; =

n

n+1
WA +F - B

At the ¢ = | boundary,

n
oF oF A oF oF JF
1 Ap + —— Alpu) + —— + —— Alpw) + —— AE +
N, 1,,[P Alpu) 9 (p) ow) (p) 9E, r:,Nl_u

Op d(pu) d(p
y OF pn, OF 0 * OF . n OF pho, oF 1" _
Ny ’a p+ E (Pu)+m (pv) + P (pw) + oy T N,j_

1
3V +Fy 1= Fu,j
Analogous equations can easily be written for the » boundaries.

Specified Three-Point Gradient in Coordinate Direction, 0F|d¢ = f

Applying equation (7.8) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differenc-
ing,

[oF oF oF oF !

-3/, apA +a< ” A()+a()A()+ ()A(W)+aETAEr]w+
[oF oF A oF 2T

4J2’/_ P Ap +5— 3ol A(pu) + a(v) Alpy N+) Aow) +-2£- oE, AET]M“
- A n

3 gﬁA + a(aF) Alpr) + a?i) Alpy) + (aF) Alpw) + aaﬁg' Aﬁr:Lj=

A8 + 3F, - aF) + FY

At the ¢ = | boundary,

74 PROTELS 2-D Subprograms: BCF PROTELUS Programmer’s Reference

_ n
oF n, OF .7 aF " oF .~ 0F o]
N Ap +——+ u) + ——Apv) + Alpw) + AE -
n
B 3F 1 oF " OF Ap
W | S+ R S0+ T A Ty S S el
3 A=Y
n
aF aF ~ F " oF " oF L\ p
ﬂmJ[$Ap+au)’M+EGSM””®@MA””+6&A&jnf=

n+l - arn Al
(NN SR A 3y, j
Analogous cquations can easily be written for the » boundaries.

Specified Two-Point Gradient in Normal Direction, VFen=f

Applying equation (7.12a) of Volume I at the ¢ = 0 boundary, and using two-point one- sided differ-
encing,

n
oF \a 61- 6ﬁ
Sy | FoAp 5 Al 5 Al Nt A + 55 AE +
n
OF \n af A B
A¢ n+1 (5)(")‘ + éyny)l,j n n n
o [fl.j — ;o +F - by

where

=&+ 8

and ¢, is the variably centered difference operator presented in Scection 6.0 of Volume 1. At the (=1
boundary,

n
oF 5
Ty | E-ap+ Alpu) + AlpV) + =——— A AE +
Nlu[a (m(p) ()“) am oW+ JMAJ
n
ar oF 6
Iy Ap + = + = ApY) + B(ew) + 5~ AE =
v B85 + g 2 om0+ Sy 2PN+ 7]MJ
Af n+l _ ($xmx + fy'ly)Nl.j n n -n
Ty) [le J My] SuF Ny |+ EN =1~ Frg

Analogous equations can easily be written for the n boundaries.

Specified Three-Point Gradient in Normal Direction, VE e n=f

Applying equation (7.12a) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differ-
encing,

PROTEUS 2-D Programmer’s Reference PROTEUS Subprograms: BCF 75

—yu[mw Ao + 52 A + 52 @m+aFA&mJ+
4121[a(u) Alpt) + f)A(p)+a() Alpw) + aaEF AEJJ“
I35 ng + a(aFu) A + 52 a(v) A(p) + (aF) Aip) + 06EFT a J:,jz

%[fl"fl WQO F, J]+3F1 j—4F+ FY

where

m=\/&+ 8

and 6, is the variably centered
boundary,
4[

4.][\7‘ —],j[

3‘/*1 J

Al +—=2E_ () + OF

5(u) a(p V)

JF
op

oF
(3p ap

2A<§ n
[R -

oF
a(pu) Apr) + 2L (o) A + -2

+ = A(p u + ——— A(p V) + =

oF oF
Apu) 9pv)
(Exne + Ey’ly)Nl,j
mu,,j

Analogous equations can easily be written for the » boundaries.

Linear Extrapolation

oF
o(pw
oF
o(ew
oF
Spw

5»7531,/] ~Fua+4FN Ly = 3F

w)

w)

w)

Applying equation (7.14) of Volume 1 at the ¢ = 0 boundary,

differcnce operator presented in Section 6.0 of Volume 1. At the ¢ =1

oF

= Alpw) + —=— AE -
(P) aE TJ N2,
qn
oF
A(pw +— AE +
) aE Vl _I)j
—n
oF
W) + —— AE =
(P) aE TJNl,j

oF OF "
J A -
,j[3 Ap + 0(pu) A(p U+ ——— () (p V) + ———— pw) A(PW)+ aE AET]]J
OF _OF OF _OF oF .~ 1"
2/ 5A9+ 209 Alpr) +=2E (p) Alpv) +2E ow) A(pW)+ oE; AET:LJ'*’
OF oF a "

At the ¢ = 1 boundary,

n

oF _OF oF oF
Iny 2| =86+ =L A(pw) + 2L _ A + = A(pw) + == AF -
M 2:/[5,) a(u) (p) A(pv) (p) Apw) (p : aEr T]N,—z.j
n
oF BF .1 OF oF
2 U + = Apv) + =2 — Apw) + <L AE +
M4J[¢ mw Al dw @) Hpw) @) 0Ly JNHJ
n
aF oF oF oF
Iy | 2Eap + + Wt e M| =
‘W[w Sy Y69+ Gy 809 + 52 oy Ao+ 3 4%1
— Iy i+ 2y 1,5 = Fy.j

76 PROTELS 2-D Subprograms: BCF

PROTELS Programmer’s Reference

Analogous equations can easily be written for the 5 boundarnies.

Remarks
. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. An error message is generated and execution is stopped if a non-cxistent user-written boundary condi-
tion 1s spectfied.

3. The scratch array DUMMY, from the common block DUMMY]1, is used to store the value of the
function F for boundary condition types + 93. The array is filled in subroutine BCFLIN and passed

through to subroutine BCGRAD.

PROTELS 2-D Programmer’s Reference PROTEUS Subprograms: BCF 77

Subroutine BCFLIN (lBC.llIQ.lBOL'.\'D,IML\',I.\IAX,F,DFDRIIO,DFDRL",DFDRV,DFDRW,
DEFDLT,FBC)

Called by Calls Purpose
BCF User-supplied routine for linearization of uscr-supplied boundary con-
ditions.
Input
IBC Boundary condition types for current sweep direction, specified

as IBC(LJ), where I runs from 1 to N,. corresponding to the N,
conditions needed, and J =1 or 2, corresponding to the lower and
upper boundanies.

IBOUND Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

IEQ Boundary condition equation number.
IMIN, IMAX Minimum and maximum indices in the sweep direction.

Qutput
DFDRHO, DFDRU, DEDRYV, Three-clement arrays, specified as DEFDRHO(IW), etc., giving
DFDRW, DFDET the values of 0F/dp, dF|d(pu), OF|d(pv), OF|3(pw), and OF[OFE .
DUMMY A scratch array, specified as DUMMY(LJ), containing the value

of the function F. The subscripts I and J run from 1 to &, and
Ny, respectively. This is only needed for boundary condition types
+ 93, and only needs to be defined at the beginning of each sweep.

F A three-element array specified as I(IW) giving the value of the
function F at the boundary (IW = 1), at the first point away from
the boundary (IW = 2), and at the second point away from the
boundary (IW = 3). Values at IW = 3 are not needed for bound-
ary condition types 91, 92, or —92, Values at IW = 2 are not
needed for boundary condition type 91.

I'BC Boundary condition values for current sweep direction, specified
as FBC(LJ), where I runs from 1 to ¥,,, corresponding to the N,
conditions needed, and J = 1 or 2, corresponding to the lower and
upper boundaries. This is only nceded if values for GBCI or
GBC2, or FBCI or FBC2, are not specified in the input namelist
BC.

Description

Subroutine BCFLIN is a user-written routine used in conjunction with subroutine BCE for user-written
boundary conditions of the form AF =0, F = f, 3F/a¢ = f, and VF«n = f. BCFLIN supplies the values of
£ and its derivatives with respect to the dependent variables, which are required for writing the lincarized
form of the boundary condition.

The version of BCFLIN supplied with PROTEUS makes BCF equivalent to BCTEMP, except for the
total temperature options in BCTEMP. Thus F =T, 9F/dp = 0T]dp, etc., where T and its derivatives with
respect to the dependent vanables are computed using the perfect gas equation of state. (See Section 5.3
of Volume 1.) This version of BCFLIN is intended as an example for use in coding boundary conditions
not already available.

78 PROTELS 2-D Subprograms: BCFLIN PROTELS Programmer’s Reference

Remarks

This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. The capability of specifying FBC as an output variable may be useful in writing time-dependent

boundary conditions. It also may be used when specifying boundary conditions involving denvatives
tions. In this case, the derivatives in the non-sweep dircction may be lagged

in both coordinate direc
one time step and treated as source terms.

PROTELS 2-D Programmer’s Reference PROTELUS Subprograms: BCFLIN 79

Subroutine BCGEN
Called by Calls Purpose
BvUP BCDENS Manage computation of boundary conditions.
EXEC BCE

BCPRES

BCQ

BCTEMP

BCUVEL

BCVDIR

BCVVEL,

BCWVTEL

BLKOUT

Input

*

*

IF'BCI, FBC2
IBCI, IBC2

IDEBUG
IPRTIA, IPRT2A
ISWEEP

I'T

A

I, 12

NBC

NEQ

NOUT

NPRTI1, NPR12
NI, N2

Output

IBC, FBC

IBOUND

IEQ
IMIN, IMAX

Description

Subroutine BCGEN manages the computation of coefficients and source terms for boundary conditions.

It first loads the NEQ boundary conditio

80 PROTELS 2-D Subprograms: BCGEN

Point-by-point boundary condition values for the & and 5 di-
rections.

Point-by-point boundary condition types for the ¢ and n di-
rections.

Debug flags.

Indices for printout in the & and » directions.
Current ADI sweep number.

Current time step number r.

Index in the “vectorized” direction, i,.

Gnd indices i and j, in the ¢ and y directions.

Cray PARAMETER specifying number of boundary conditions
per cquation.

Number of coupled equations being solved, N,
Unit number for standard output.
Total number of indices for printout in the ¢ and 5 directions.

Number of grid points N, and V,, in the ¢ and y directions.

Boundary condition types and values for current sweep direction,
specified as IBC(1J) and FBC(1,J), where I runs from 1 to N

. , 7\ g
corresponding to the V,, conditions needed, and J = 1 or 2, cor-
responding to the lower and upper boundarics.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number, from 1 to N

Minimum and maximum indices in the sweep direction.

n types and values from the input arrays IBC1 and FBCI, or IBC2

PROTELUS Programmer’s Reference

and FBC2, depending on the ADI sweep, into the arrays IBC and FBC. This was done so that the BC
routines could be non-sweep dependent. Next the coefficient submatrices and source term subvectors at the
two boundaries in the current sweep direction are initialized to zero. And finally, the appropnate BC rou-
tine is called, depending on the input boundary condition type, for each of the NEQ boundary conditions
at each boundary in the sweep direction.

Remarks

1. An error message is generated and execution is stopped if any of the non-existent boundary condition
types 80-89 is specified, or if the boundary condition type 1s less than 0 or greater than 99.

2. This subroutine generates the output for the IDEBUG(3) option.

PROTELUS 2-D Programmer’s Reference PROTEUS Subprograms: BCGEN 81

Subroutine BCGRAD (F,I,DFD1,DFD2)
Called by Calls Purpose
BCDEXNS Compute gradients with respect to ¢ and ».
BCF -
BCPRES
BCQ
BCTEMP ,
BCUVEL
BCVDIR
BCVVEL
BCWVEL
Input
¥ ALPHAL, ALPHA?2 Spatial difference centering parameters a, and a,, for the & and n
directions.
DXI, DETA Computational grid spacing A¢ and Ay.
F A two-dimensional array, specified as F(1,J), containing the func-

tion f whose gradient is to be computed. The subscripts [and J
run from | to N, and V,, respectively.

| Current grid point index in the current sweep direction.
ISWEEP Current ADI sweep number.
I1, 12 Grid indices / and j, in the ¢ and y directions.
* NI, N2 Number of grid points N, and ¥,, in the ¢ and y directions.
Qutput
DFDI, DFD2 First derivatives of / with respect to ¢ and ».

Description

Subroutine BCGRAD computes first derivatives of the function f, with respect to ¢ and », at the current
grid point in the ADI sweep direction. At interior points, the variably centered difference formula presented
in Section 6.0 of Volume 1 is used. For derivatives with respect 1o ¢,

of]
(_5-5—),,/: Z‘é‘[(l —a)j[.+[,j+ (2(1 - 1)/;,_/— “f;—l,j]

An analogous formula is used for » derivatives.

At boundary points three-point one-sided formulas are used.

af I
(3;)1'13 m(—3f1,/+4f2,/“f3,/)

of 1
<-5?>N1.j x> m(f,v, -2,) 4/:\"1 -1, + BfIV‘,j)

Again, analogous formulas are used for 4 derivatives.

82 PROTELS 2-D Subprograms: BCGRAD PROTEUS Programmer’s Reference

Subroutine BCMET (I, FMO0,EFM1,FM2)
Called by Calls Purpose
BCDENS Compute various metric functions for normal gradient boundary con-
BCF ditions.
BCPRES
BCQ
BCTEMP
BCUVEL
BCVDIR
BCVVEL
BCWVEL
Input
ETAX, ETAY Metric coefficients n, and y, (or », if axisymmetric.)
I Current grid point index in the current sweep direction.
ISWEEP Current ADI sweep number.
I1, 12 Grid indices i and j, in the ¢ and » directions.
XIX, XIY Metric coefficients ¢, and £, (or &, if axisymmetric.)
Output
FMO, FM1, FM2 Various metric functions used for normal derivative boundary
conditions.

Description

Subroutine BCMET computes metric functions used for normal gradient boundary conditions. For the
first ADI sweep,

: i
FMO= /¢ + &

M1 =0
FM2=¢me+ ¢,
And for the sccond sweep,
[2 2
FMO = /nx + 7,
FMl=¢m, + &y
FM2=0

PROTELS 2-D Programmer’s Reference PROTEUS Subprograms: BCMET 83

Subroutine BCPRES (IBC,FBC,IEQ,IMIN.IMAX,IBOUND)

Called by Calls Purpose
BCGEN BCGRAD Compute pressure boundary conditions.
BCMET
Input
CP, CV Specific heats ¢, and ¢, at time level n.
DEL Computational grid spacing in sweep direction.

*

DPDRHO, DPDRU, DPDRYV,
DPDRW, DPDET

DTDRHO, DTDRU, DTDRYV,
DTDRW, DTDET

GC
IBASE, ISTEP

IBC, FBC

IBOUND

IEQ

IMIN, IMAX

ISWEEP

ISWIRL

v

JI

NOUT

NR, NRU, NRV, NRW, NET

P, T

PR

RGAS

RHO, U, V, W
RHOR, UR

Output

84 PROTELUS 2-D Subprograms: BCPRES

AB,C

Derivatives dp/dp, dp/d(pw), dpjd(pv), dpld(pw), and dp|dk ..
Denvatives 8T/0p, 6T/0(pu), dT[3(pv), 8T/d(pw), and oT|oF,.

Proportionality factor g, in Newton’s second law.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Boundary condition types and values for current sweep direction,
specified as IBC(L,J) and FBC(I,J), where I runs from 1 to Ny
corresponding to the N, conditions needed, and J =1 or 2, cor-
responding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.
Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Index in the “vectorized” direction, i,.

[nverse Jacobian of the nonorthogonal grid transformation, /-1,
Unit number for standard output.

Array indices associated with the dependent variables P, pU, pv,
pw, and E;.

Static pressure p and temperature T at time level .
Reference pressure p,.

Gas constant R.

Static density p, and velocities u, v, and w, at time level ».

Reference density p, and velocity u,.

Coefficient submatrices A, B, and C at boundary IBOUND (row
IEQ only).

Source term subvector S at boundary IBOUND (element IEQ
only).

PROTELS Programmer’s Reference

Description

Subroutine BCPRES computes coefficients and source terms for pressure boundary conditions. The
lincarized equations for the various general types of boundary conditions are developed in Section 7.0 of
Volume 1. The following scetions apply these generalized equations to the particular pressure boundary
conditions in PROTEULS®

No Change From Initial Conditions, Ap = ()

Applyving cquation (7.3) of Volume 1, and noting that Og/ﬁ(:) = Jdg/dQ, we get simply
ap ap ~ ap A ap A ap A]
Joil =—Ap+ — " AlpV) + —— Alpw) + —— AL =0
u[5y AP Gy Mpw b gl Al e Mew) gy A
The derivatives p/dp, 8pld(puw), ctc., depend on the equation of state. They are defined for a perfect gas

in Section 5.3 of Volume |.

Specified Static Pressure. p = f

Applying equation (7.5) of Volume |,

‘:ﬁ,j 5 T Pij
v Pl

i op A ap A op A ap A ap A " n+t Pr8e n
Ji,] [_(77 Ap + W Alpu) + W Alpv) + W Alpw) + m‘ Af;T

i

Specified Two-Point Pressure Gradient in Coordinate Direction, dplop =1

Applying cquation (7.8) of Volume 1 at the & = 0 boundary, and using two-point one-sided differencing,

p A op A op A ap A ap ~ 1
—J | A = — Alpw) + ——— AlpV) + = A(pw) + = — AFp |+
W[55 AP Ay BP0 Gy ANy A gy 88
/N op A op N ap A op A
I G S— [ESNSAE. S— — - AE, =
Jz,][B0 Ap + EP) Alpu) + o) Alpv) + 3pw) A(pw) + 3L, Alq Y
1 P8
AOR T =5+l =P,
Py
At the ¢ = | boundary,
p n, Op A Op o o~ dp A
—J | =—Ap+——7A 4+—=——A A —— AF
A\1_1,1|: 3 p+ o) (pu) 3ov) (pv) + Bow) {(pw) + g, AT .’V,—l,j+
p A, P ~ ap A ap » ap A
Iy | == Ap + —— Alpt)) + ——— Alpv) + —— Alpw) + =7— ALy =
‘Vl’/[ap P a(pu) (p) a(pv) (p) a(p}t,) (f 7 (][L] 7 N
1 P8
(ADfN —=5 4PN, —1,;— PNy.J
Pty

Analogous equations can easily be written for the # boundanes.

¢ In the following description, for the first ADI sweep the dependent variables should have the superscript *, re-
presenting the intermediate solution, and for the second ADI sweep they should have the superscript 7, representing
the final solution. For simplicity, however, only the superscript n is used. The superscripts on all other variables
are correct as writlen.

PROTELS 2-D Programmer’s Reference PROTELUS Subprograms: BCPRES 85

Specified Three-Point Pressure Gradient in Coordinate Direction, opjop = f

Applying equation (7.8) of Volume 1 at the & = 0 boundary, and using three-point one-sided differenc-
ing,

G 5 é a A) A
P n cp P P op Y
35| 5,08 e Alpr) + 5 oY)+ Alow) + o Ay |+
Op 6p ap Op 6 "
aJ, AP W) + 5 AlpY) + = Apw i Af -
[op . p A op o~ ap A 0p A]
‘,3,j E;Ap + o) Apu) +WA(pV) +WA(pW) +EA[LTJ =
L - - 3.7
7(A’}f1n+l prgc + 3P1 g 4p2n‘j +P;,j
Prur

At the ¢ = 1 boundary,

op op A op A ap A ap A
‘/Nl—2,j[A +WA(pU)+__A(pV)+WA(pW)+mAET -

ap u) 5(pv) B "Vl —2,_/
P on, O A A o o @ AT
Wy il = A+ ———Apu) + —— A(p) + —— A w) + —— AE, +
IVI 1,/ [ap P a(pu) (p) a(pv) (p) a(pw,) (p) abT T Nl iy
op p A op A ap A o T
LY Ap + —— W+ ——A(pv) + —— A(pw) + —— AE =
Ny Jj [ap 14 a(u) (p) a(pv) (P) 6(pw) (,0) aET T_J N

Pr8,
2880 ==
k

pr

n n n
PNy -2, + 4‘DN| =1,;j 3‘DN1»]

Analogous ecquations can easily be written for the » boundaries.

Specified Two-Point Pressure Gradient in Normal Direction, Vpen = f

Applymg equation (7.12a) of Volume 1 at the &£ =0 boundary, and using two-point one-sided differ-
encing,

n

ap ap A ap op op
—‘]l,j[a A”+a(pu) A(pu)+W (p)+ o)A(pW)+ 3E; AET],j+

op ap ap ap A ap T
Sy | 506 Alpu) + =2 (p)+—A(pW)+—-AEr =
OE, 2

Op 6(u) (pv) d(pw)
+1 p,gc (fx’?x + éyny)l,j n n n
m1 y [fl" » s o1, | +P1 P2
r

where

=Ja+e

and 6, is the variably centered difference operator presented in Section 6.0 of Volume 1. At the & =1
boundary,

86 PROTELS 2-D Subprograms: BCPRES PROTELS Programmer’s Reference

J P ap+ =P A + AY) + =P Ay + ~L AE S
. | == W+ ——— Alpv W E o
M=l 3p ST 0w TP T) TP T ey T "y o1
@ ~ 3 A e IS ? Y ﬁ A n
To | ZLoap =LA + =L Apy) + =L A(pw) + - AEp | =
Y dp A(pu) Apv) d(pw) ol Ny J

(fx'?x + 5)"7)') N J

Af n+1 Pr8ec . oon n n
my | SN 2 my 0PN |t PN =1, T PN
N u N J
Priy

Analogous equations can casily be written for the » boundaries.

Specified Three-Point Pressure Gradient in Normal Direction, Vpan = f

Applying equation (7.12a) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differ-

encing,
B L p A ap A I
=34y | % Ap + o) Alpu) + o) A(pv) + o) A{pw) + 3L, A[,T_ y +
B ﬁp op A @p A @p A 0[) A
d/; ;| =—dp + Alpu) + Alpv) + Alpw) + = AEp | —
[ﬁp ap ap .‘p A
g3 A(PU) + (P)+ A(p W)+ -—— AEp| =
o B 5 0(u) 5(v) Apw) 5ET 3,/
’)Af n+1 Pr&ec (Ex1x + é.‘“")’)l:j . oon n n n
N, T~ s Ol | 3= 4Pt P,
p,ur 2/
where

2
’"z\x’/‘fi““{y

and §, is the variably centered difference operator presented in Section 6.0 of Volume 1. At the =1
boundary,
B p A op A ap A ap A op A~ "
S 5] — + Alpu) + AlpV) + ——— Alpw) + —— AE, —
N =2,] i ap P a(pu) (p) a(py) (p) a(pw) (p) aET]— N =2,
[. op ap ap T
a7, . =—=Ap + A —_— - + AE +
p . op A op .~ dp n 6p)
3JV1 j K p+ 2010 Alpu) + o) Apv) + 3w Alpw) + 3E, AES . =
2A¢ n+t Pr8e (éxnxi}‘ gy”}’)i\"l-j n n ap” 37"
”I,lej NJ 14 U2 B m:"v.pj Ny J _le =2, + le -1, ‘D‘Vlrj
rer

Analogous equations can easily be written for the » boundaries.

PROTEUS 2-D Programmer’s Reference PROTELUS Subprograms: BCPRES 87

Linear Extrapolation of Static Pressure

Applying equation (7.14) of Volume 1 at the ¢ = 0 boundary,

[op . ® A A B aiir+ 2P AR]
I -_G_;Ap + WA(pu) + mA(p&) +) A(pw) + 3E, AET_]J -
) ap A op A op n PP |
Py | 3 °F By MO Gy AN iy Mew + OET AET421+
[op n 0P A~ p LBval
i, EAP‘*‘ o A(pl‘)+mA(pv)+ ow) Alpw) + 3, AE; ; ,-=

—P?,j+2l’2",j—.0§,j

At the ¢ = | boundary,

J L. Aot + 5 Alp¥) + a T)+apA1§—
. w -
M=27| 3y P T 300 2 P g OEr " w22
[op p_ 5P "y 40P oAb |
2y 1 Ap + Alpt) + —— Alpv) + Alpw) + —— AE +
M| T 8 Gy AP Gy B+ Gy B g A
J
K op .~ op .o » oo A
Iy Ap + ——— A(pu) + A(pv) + Alpw) +—-—AE =
Mol | Bp O F om0 Gy MO Gy MW F g AR

n n
- PNl ~2,t 2PN, 1= PNy
Analogous equations can easily be written for the » boundaries.

No Change From [nitial Conditions for Total Pressure, Ap; =0

=Ly)eT
2

The total pressure is defined as

PT=P<1 +

Applying equation (7.3) of Volume 1, we get

A(pY) +

pr A opr A n
A(pw) + —— AE =0
b d(pu) HNpw) (ow) OEr 7]1,/'

apT A 6
g Ap + A +
l: 3y OF (ot))

where

88 PROTELS 2-D Subprograms: BCPRES PROTEUS Programmer’s Reference

opr Op y—=1 o\ ¥ y=1 2\ o>
Pr P (14X p L V2T oM
T = (1+ M tpL (1+15—u .

opr ap =1 N\ v y=1 2\ au?
= — M\ y=l —) y—1 Y
3ot o) 1+ 3 ! +p > 1+ 3 1

opr op y =1 N\ v y—1 2\ o’
— y—1 g LA y—1 ‘
o = o) (1 +—5—M +ps(1+——M

& d -1 - - I T
PT p (H— v M2) =1 +p%(1+ y MZ) T oM

!

a(pw) _ dpw) 2 2

dpr op y—1 o\ ¥ y—1 2\ am?
P R LA } y—1 A M y—1 !
3E; ~ OEF (1+ 3 { tr5 1+ > 7

The Mach number is defined by

s Raiewt (et (ev) + (ew)
1w = i - = 2
yRT yRp“T

The derivatives dM?/dp, etc., can then be derived as

oM* _ pf 2, LT
i M(p+T p)

oMY 2w M* oT

ANpu) YP T 0J(puw)

M2 v MY T

Apv) 1P T d(pv)

aM? w M2 AT

Apw) P T d(pw)

oM: __ M* T
OE7 T OEr

Specified Total Pressure, pr=f

Applying equation (7.5) of Volume 1, we get
pr . pr A Opr o~ dpr o~ Opr oa |
Ji Ap + Alpu) + ——— A(pv) + Alpw) + == AE =

-1 R L
ﬁyh@%—ﬁ{0+y21W)wq
Py i

where py, 9p;/9p, etc., are defined above as part of the description of the Ap; = 0 boundary condition.

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. An error message is generated and execution is stopped if a non-existent pressure boundary condition
is specified.

PROTEUS 2-D Programmer’s Reference PROTELS Subprograms: BCPRES 89

3. The multiplying factor p,g./p,1? that appears with specified values of pressure and pressure gradients is
necessary because input values of pressure are nondimensionalized by the reference pressure
P, = p,RT,g, while internal to the PROTELUS code itself pressure is nondimensionalized by the nor-
malizing pressure p, = p,2. (See Section 3.1.1 of Volume 2)

9 PROTELS 2-D Subprograms: BCPRES PROTELUS Programmer’s Reference

Subroutine BCQ (IBC,FBC,IEQ,IMIN,IMAX,IBOUND)

Called by Calls Purpose
BCGEN BCGRAD Compute conservation variable boundary conditions.
BCMET
Input

*

ALPHAL ALPHA2

DEL
DXI, DETA
IBASE, ISTEP

IBC, FBC
IBOUND
IEQ

IMIN, IMAX
ISWEEP
ISWIRL

v

1, 12

A

NC, NXM, NYM, NZM, NEN

NOUT
NIP

RHO, U, V, W ET

Qutput

A B, C

9]

Description

Subroutine BCQ computes coefficients and source terms for conservation variable boundary conditions.
The linearized equations for the various general types of boundary conditions are developed in Section 7.0

PROTELUS 2-D Programmer’s Reference

Spatial difference centering parameters a, and a,, for the § and n
directions.

Computational grid spacing in swecp direction.
Computational grid spacing A and Ay.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Boundary condition types and values for current sweep dircction,
specified as IBC(IJ) and FBC(LJ), where I runs from 1 to N,
corresponding to the N, conditions needed, and J =1 or 2, cor-
responding to the lower and upper boundarnes.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.
Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Index in the “vectorized” direction, i,.

Gnd indices i and j, in the ¢ and 5 directions.

Inverse Jacobian of the nonorthogonal grid transformation, /™.

Array indices associated with the continuity, x-momentum,
y-momentum (or r-momentum if axisymmetric), swirl momen-
tum, and cnergy equations.

Unit number for standard output.

Cray PARAMETER specifying the DIMENSION size in the {
direction.

Static density p, velocitics w, v, and w, and total energy E7 at time
level n.

Coefficient submatrices A, B, and C at boundary IBOUND (row
IEQ only).

Source term subvector S at boundary IBOUND (element [EQ
only).

PROTELS Subprograms: BCQ 91

of Volume 1. The following sections apply these generalized equations to the particular conservation vari-
able boundary conditions in PROTEUS.?

No Change From [nitial Conditions, AQ = ()

Applying equation (7.3) of Volume 1, and noting that 6g/66 = J0g[dQ, we get simply
Jz, j AQ{",Ij =0
where Q 15 the element of (3 for which this boundary condition is to be applied.

Specified Conservation Variable, Q = f

Applying equation (7.5) of Volume 1,
A +1
S A0 =R~ O

Specified Two-Point Conservation Variable Gradient in Coordinate Direction, 6Q/6¢ =f

Applying equation (7.8) of Volume 1 at the & = 0 boundary, and using two-point one-sided differencing,
~J1.; Aéﬁj +J2, Aé:';,j = (AOAT + or ;-0
At the ¢ = 1 boundary,
A N
I, 1,808, Z1 I AQy, ;= (Ai)f,(;:f} + 08 —1,;~ ON,/
Analogous equations can casily be written for the y boundaries.

Specified Three-Point Conservation Variable Gradient in Coordinate Direction, 8Q|0¢ = [

Applying equation (7.8) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differenc-
ing,

A N N 1
=34, ;807 ;+ 44, ;007 i~ U3 AQ3 =288/ + 307 ;- 407+ 03 ;
At the ¢ = 1 boundary,
N A N +1 n
In, <2, AQZ', —2,;— 4y, —1,jAQXJ, —-1,;t 3JNl,jAQ1r‘\l/1,j = 2(Aé)f/\’/:,j - Q/’\l/1 2t 4Q/r(rl ~1,; =3O, ;
Analogous equations can easily be written for the 5 boundaries.

Specified Two-Point Conservation Variable Gradient in Normal Direction, VQen = f

Applying equation (7.12a) of Volume 1 at the ¢ =0 boundary, and using two-point one-sided differ-
encing,

 In the following description, for the first ADI sweep the dependent variables should have the superscript *, re-
presenting the intermediate solution, and for the second ADI sweep they should have the superscript n, representing
the final solution. For simplicity, however, only the superscript 2 is used. The superscripts on all other variables
are correct as written.

92 PROTELS 2-D Subprograms: BCQ PROTELUS Programmer’s Reference

“J1,/AQ‘7,‘/+J2,]AQ§J= ;

Aé ~n+1 (él‘nx + :yr]y)] ,j
n JJ

1,/ my

N n n n
(’,;Ql,j} +O -
where

rrz

; w2
m= \/ Sx + C‘,

and o, 1s the variably centered ditference operator presented in Section 6.0 of Volume 1. At the =1
boundary,

AE [n+l (:xrlx + é:yyly)ﬂ'l,j N

n A n n n
'/-‘Vl ~1,J AQ‘Vl ~1.J + JA\‘W" AQ-\VIJ- o TI\'I j NbJ m-‘\"p/' {)VIQ-VL»J] + Q‘\-l -Lj Qi\'!./

Analogous cquations can easily be written for the 4 boundaries.

Specified Three-Point Conservation Variable Gradient in Normal Direction, VO« n = f

Applying equation (7.12a) of Volume | at the & = 0 boundary, and using three-point one-sided differ-
eneing,
3y AT 4 Ay QY — s (AQY =

2AE 1 (Core +&mpy ;. 3" i
5 l:fl,f;r - my ‘ 3,00 ;| +300, =407 ;+ 03

where

{2 2
m:\/§x+€y

and 4, 1s the variably centered difference operator presented in Section 6.0 of Volume 1. At the & =1
boundary,

\n N \n
t/‘vl '2)1 AQ‘\VI -2,_} - 4.]‘\{1 -1»] AQ‘\rl _‘1,/ + 3./;\'1’1' AQ;VI,j =

2AE ntl (ixrlx + éy’fy)Nl,j n n n n
my [f\' I 0,0n j | = On <2+ 40N 1, =30,

fﬂ“\-l j

Analogous cquations can casily be wntten for the » boundaries.

Linear Extrapolation of Conservation Variable

Applying equation (7.14) of Volume 1 at the ¢ = 0 boundary,

J AAn 2 A“n J AAn L 0% _ o
1,800 ;= 20, jAQy i+ T3 AQ; j=—0) ;+ 20, ,— 03

At the ¢ = 1 boundary,

. N
n - n no_ n n n
/‘\'1 —2,jAQf\', -2,; "‘]NI —1,;AQ.‘\'l -1, '/N,,jAQN,,j = 'QN, 2t 2Qvl —-1,; = Q.\'l,j

Analogous equations can easily be written for the » boundanes.

PROTEUS 2-D Programmer’s Reference PROTELUS Subprograms: BCQ 93

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. An error message is generated and execution is stopped if a non-existent conservation variable boundary
condition 1s specified.

94 PROTELS 2-D Subprograms: BCQ PROTELUS Programmer’s Reference

Subroutine BCSET

Called by Calls Purpose
MAIN Set various boundary condition paramcters and flags.
Input

*

GBC1, GBC2
GTBCIL, GTBC2

ISWIRL
I'TDBC

JBCI, JBC2
JTBCI, JTBC2

KBCI1, KBC2
NBC

NEQ
NOUT
NTBC

NTBCA

N1, N2

Output

PROTELS 2-D Programmer’s Reference

FBCI, FBC2
IBCI1, IBC2

IBCELM

IBVUP

JBC1, JBC2

KBCPER

Surface boundary condition values for the ¢ and » directions.

Time-dependent surface boundary condition values for the ¢ and
n directions.

Flag for swirl in axisymmetric flow.

IFlag for time-dependent boundary conditions; 0 if all boundary
conditions are steady, | if any general unsteady boundary condi-
tions are used, 2 if only steady and time-periodic boundary con-
ditions are used.

Surface boundary condition types for the ¢ and # directions.

I'lags for type of time dependency for boundary conditions in the
¢ and » directions.

Boundary types for the ¢ and » directions.

Cray PARAMETER specifying number of boundary conditions
per equation.

Number of coupled equations being solved, N,,.

Unit number for standard output.

Number of values in tables for general unsteady boundary condi-
tions.

Time levels at which general unsteady boundary conditions are
specified.

Number of grid points N, and N,, in the ¢ and # directions.

Point-by-point boundary condition values for the ¢ and # di-
rections.

Point-by-point boundary condition types for the ¢ and » di-
rections.

Flags for elimination of off-diagonal coefficient submatrices re-
sulting from three-point boundary conditions in the ¢ and » di-
rections at either boundary; 0 if elimination is not necessary, 1 if
1t is.

Flags for updating boundary values from first sweep after second
sweep; 0 if updating is not necessary, 1 if it is.

Surface boundary condition types for the ¢ and » directions (only
if using the KBC meta flags.)

Flags for spatially periodic boundary conditions in the ¢ and n
directions; 0 for non-periodic, 1 for periodic.

PROTELUS Subprograms: BCSET 95

NPT, NPT2 N, and N, for non-periodic boundary conditions, N, + | and
N, + 1 for spatially periodic boundary conditions in & and y.

Description

Subroutine BCSET sets vanous boundary condition parameters and flags. If boundary types are spec-
ified with the KBC meta flags, the appropriate surface boundary condition types are loaded into the JBC
arrays. Special flags are set if spatially pertodic boundary conditions are being used. BCSET also sets NP1
and NPI2, the number of grid points in each ADI sweep direction to be used in computing coefficients and
source terms. For spatially penodic boundary conditions in the ¢ direction, NPT1 = N1 + 1. Similarly, for
spatially periodic boundary conditions in the # direction, NPT2= N2+ 1. This 1s done in order to use
central differences at the pertodic boundary. (See Section 8.2.2 of Volume 1.)

Next, if surface boundary conditions are being specified using the JBC and GBC parameters (or the
KBC meta flags), the appropniate point-by-point boundary condition types and values (the IBC and F'BC
parameters) are loaded with the JBC and GBC values.

If three-point boundary conditions are being used at a boundary, a flag is set for eliminating the resulting
off-diagonal coefficient submatnix. [If gradient (two-point or three-point) or extrapolation boundary condi-
tions are used during the first sweep, a flag is set for updating the & boundary values after the second sweep.
The input boundary condition parameters are then written to the standard output file.

Remarks

L. An error message 1s generated and exccution is stopped if an invalid boundary type is specified with the
KBC meta tlags.

96 PROTELS 2-D Subprograms: BCSET PROTELUS Programmer’s Reference

Subroutine BCTEMP (IBC,FBCIEQ,IMIN IMAX,IBOUND)

Called by Calls Purpose
BCGLEN BCGRAD Compute temperature boundary conditions.
BCMET
Input
CP, CV Specific heats ¢, and ¢, at time level n.
DEL Computational grid spacing in sweep direction.

DTDRHO, DTDRU, DTDRY,
DTDRW, DTDET

IBASE, ISTEP

IBC, FBC

[BOUND

IEQ

IMIN, IMAX

ISWEEP

ISWIRL

v

J1

NOUT

NR, NRU, NRV, NRW, NET

P, T
RGAS
RHO, U, V, W

Output

A B C

Description

Derivatives 3T/dp, 8T|d(pu), 8T|3(pv), T3(pw), and 3T/IE;.

Base index and multiplication factor used 1n computing one-
dimensional index for two-dimensional array.

Boundary condition types and values for current sweep direction,
specified as IBC(I,J) and FBC(I,J), where I runs from 1 to N,
corresponding to the N, conditions needed, and J =1 or 2, cor-
responding to the lower and upper boundaries.

Flag specifying boundary; | for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.
Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Index in the “vectorized” direction, i,.

Inverse Jacobian of the nonorthogonal gnd transformation, J/-!.
Unit number for standard output.

Array indices associated with the dependent varables p, pu, pv,
pw, and E.

Static pressure p and temperature 7T at time level .
Gas constant R.

Static density p, and velocities u, v, and w, at time level n.

Coefficient submatrices A, B, and C at boundary IBOUND (row
IEQ only).

Source term subvector S at boundary IBOUND (element IEQ
only).

Subroutine BCTEMP computes coefficients and source terms for temperature boundary conditions.

PROTELUS 2-D Programmer’s Reference

The linearized equations for the various general types of boundary conditions are developed in Section 7.0

PROTELUS Subprograms: BCTEMP 97

of Volume [. The following sections apply these generalized equations to the particular temperature
boundary conditions in PROTEUS.10

No Change From [nitiul Conditions, AT =0

Applying equation (7.3) of Volume 1, and noting that ﬁg/c’(:) = .Jdg[8Q, we get simply

n
T aT ~ aT N ar ~oL 3T oA B
J; [5 Ap + o Alpu) + o) Alpy) + 3w Afpw) + 3E; Afrlj—“

The denvatives 07/38p, 8T pw), etc., depend on the equation of state. They are defined for a perfect gas
in Section 5.3 of Volume 1.

Specified Static Temperature, T = f

Applying equation (7.5) of Volume 1,

n
AT ar aT ~ 0T . oT 1
Jz‘,j[(ap Ap + o A(p)+ Aon) Alpv) + 0((pw) A(pw)+—af AE]lj: ;,"f _ 1{_}/_

Specified Two-Point Temperature Gradient in Coordinate Direction, 8T|0¢ = f

Applying equation (7.8) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differencing,

n
or orT % or aT
—J jl: ap A + 5(A(p u) + WA(/)V)+ 3(ow) (P w) + E, AE :|Ij+

n
0T aT or " or _ n-, oT
Jy il 586 +=——A(pw) + Alpy) + =Z— Alpw) + < AE] =
2,/[ap a(p 9 (p) () (,0) a(pW) (P) aET T 2
@O+t - T3

’j

At the ¢ = | boundary,

n
0T oT n aT N aT A aT
Sy] SAs+ Alpw)y + —— Alpv) + —— Alpw +——7—AEr] +

A],_/[i ap P a(pu) (P) a(pv) (p) a(pw,) (p) abr T N 1)

n
oT \n . T v 0T o no o 9T .o T ,p
e [?AP o ST Gany AN Ty SO T 58, AET] s

n+1 n
(As)f\,l it Tf\l -Lj" T‘V]’j
Analogous equations can easily be written for the » boundanes.

Specified Three-Point Temperature Gradient in Coordinate Direction, 81{8¢ = f

Applying equation (7.8) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differenc-
ing,

19 In the following description, for the first ADI sweep the dependent variables should have the superscript *, re
presenting the intermediate solution, and for the second ADI sweep they should have the superscript n, representing
the final solution. For simplicity, however, only the superscript # is used. The superscripts on all other variables
are correct as written.

98 PROTELUS 2-D) Subprograms: BCTEMP PROTELUS Programmer’s Reference

— n
3T n 0T) CY W aT aT 7
3 LA+ = Alpw) + 5 Alpy) + :l +
L] G 2 B A e AT om) oFr ST,
— n
oT . 0T . 1 oT A AT .~y 8T |
T 8+ 2o A(pu)+———-—a(pv) MY + 5 Blow) + 7 Mr]z,j
_ n
0T on oT aT aT b
o AT an =T A+ = AW + 5 +———AF] =
2] o c(p w 9 3o Al o(pw) o oEr T 1y
2B+ 31T 4T+ TS
At the ¢ = 1 boundary,
g T ap v 2T A+ 2T apn + =2 s + 2Lk 1 -
N2 3 B0 T e T T aew) PYYT S5ow) F

CoT A Al A or or al 1
o= + Alpw) + V) + A(pv
| o 2 e AP0 S B+ s (o) T

4y,

P VLT VT VR N:Y MUV S R
3‘]:\'1 j (q}) A[) + (}()u A(/)ll) + a(’)v) A(p\')+ ﬁ(pw) A(p“)‘*"ab'] A[/]ﬂ =

+1 e
2(AE /anj 1\1_2j+4/v —l,j'“f'iw

Analogous equations can casily be written for the » boundaries.

Specified Two-Point Temperature Gradient in Normal Direction, VT s n=f

Applying equation (7.12a) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differ-
encing,

n
oT . T T (X OT _ ac vy + 2L
—Jl,j[20 Ap + 2(pt) (pu) + (o) Apv) + 3(pw) Alpw) + OEr A[]1,j+
n
AT wn T ata o 8T a4 0T A+ 2L =
Jzyj[5 AP+ 500 Alpu) + 505 APV + 0w Alpw) + 70— 3k AErlj—
AE n+l (éxr’x + éy"y)l,j n n N
”11,1 [fl,j — ’nl,j (SV]TL]' -+ Tl.j— r2,j

where
1.2 2
m=.; ¢+ ¢,

and §, is the vanably centered difference operator presented in Section 6.0 of Volume 1. At the (=1
boundary,

n
—JM_IJ[”A + 2L A+ s A + 5o oT A(pw)+———~ALilV "
1~/

dp @(p u) o(pv) a(pw) oF
n
oT aT A aT ~ aT ~
T j[Op 8% Fow 5() Apw) + 3(pv) A+ F o) AW+ 5, AFF] N
A¢ n+l (5X'7x+éy’1y)_\'l,j - , .
N, [f'“‘j O | T T

Analogous equations can easily be wntten for the » boundaries.

PROTELS 2-D Programmer’s Reference PROTEUS Subprograms: BCTEMP 99

Specified Three-Point Temperature Gradient in Normal Direction, VT an = f

Applying equation (7.12a) of Volume 1 at the &£ =0 boundary, and using three-point one-sided differ-
encing,

[o7 oT T . oT oT T
-3/, EA,%+ 3od) Alp) 3o A(pv) + 3w Alp w)+ 3E; AE +
_l,j
[oT T A or ., A aT A T o]
47, N ap A + ETP) Apu) + (o) Apv) +WA(pw)+?E7AETJ -
| 2,j
[o A OT A aT " T]
Jy il — Ap + Alpu) + Alpv) + A w + = AE =
| o A8 Gy M+ gy BN + i e + T iy
ZAf ,H_] (‘fxﬂx + éyny)l J
oy [ﬁ s 6,1 ;| + 377 AT+ T

where

=Ja+é&

and 6, is the vanably centered difference operator presented in Section 6.0 of Volume 1. At the ¢ = 1
boundary,

Y S,T M+t (”A“”%A“’A”)* Ty A+ 31 AET];,_“_
x| S5 iy o+ 3o 200+ Sy S + S AET]nN,—l,j+
My ,E 5+ Sy A + 52 8 + 52 A + s AET]:{IJ=

,5\ a ,:fcl+11 (EX"*;A?Z’)N"" 5,173',1,].]— Thi 2.+ 4T 1= 3Th

Analogous cquations can easily be written for the n boundaries.

Linear Extrapolation of Static Temperature

Applying equation (7.14) of Volume 1 at the ¢ =0 boundary,

T oT or O _ Ay + 21 AR
J A A ok, -
U[Lapet) (P10 + 5 MW + 52 o) + 2 AETJW
T A oT A orT " 6T
21”[dp 8 50T 6() Al + 0(pV) Alev) + pw) Alew) + Ot AETJz,jJr
jzj[g: Ap+a€pTu) Mg + 50 p) Ap) + (T) Ao+ %Agr 3j=

rh n n
=N+ -Ty

At the ¢ = | boundary,

100 PROTEUS 2-D Subprograms: BCTEMP PROTEUS Programmer’s Reference

B —N
ol on, 0T 7 oT _\) or
N i ‘ Alp¥) + - & -
Y, | dp Apt Hpw) Alp + é(pv) (o) + cpw) pu) s I . " Ny =2
- . X . . R
- A aT .~ al - aT A \, #_./_.]
"‘/M =1,] | 3p Ap + A(pu) Alp) + Apv) () + Hprv A(V“) ok, A[I# Ny =L "
- —n
OT (o 0T 7 AN M
_vr Y 4 —— AL =
/\| J | Jp Aot A(pu) Alp + () (p s (pw) (p“) ’ JLr A I_A\]»/'

. o)
=Ty g+ 2 = TN
Analogous equations can casily be written for the » boundaries.

No Change From [nitial Conditions for Total Temperature, AT, =0

o } k
Tr= /'(1 o .\12)

Applying equation (7.3) of Volume 1, we get

The total temperature is defined as

n

P L L VS LY VRSN N v g 0
J _EO_ /’*W (pu) + o) (pv) +) (m\)+ [/ T i,j_

where

ol AT 1 b — 1 Avs2
cr_a (1+y w)+y2ﬁ'r°‘a‘;~

dp Op
v =1 3‘[2
SRVER By AR

pu) 8, pu) () * 2 Hpu)

/7'[‘7 _ aT (‘12> ¥ 1 - 51‘12
apv) OV 2 dpv)
(2) 4 v 1 T (71/2
2 A pwn)

oT¢
1 v —1 A142
Mz) + i T 0.\{

oTy

+

A(pw) @(pw

arT
_ ro_ 6{ 4 Y —
C’E’]‘ C‘LT

The Mach number is defined by

2 2 2
v end ()’ () + (o)

M= UL
yRT yRpAT

The denivatives 83?2/dp, etc., can then be denived as

PROTELUS 2-D Programmer’s Reference PROTELS Subprograms: BCTEMP

101

oM 2w AP T

dpw) — P T o(pw)

oM® M oer
3E; T OEr

Specified Total Temperature, Ty = f

Applying equation (7.5) of Volume 1, we get
J oTr AL oTr A A o7, A A oTr A A Ty AEQ "

pY) i
y=1 . 2\"
n+1 n - 3
ij —7i,j<l+TM)ij

where 77, 0T;/dp, etc., are defined above as part of the description of the A7 = 0 boundary condition.
Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. An error message is generated and exccution is stopped if a non-existent temperature boundary condi-
tion is specificd.

102 PROTELS 2-D Subprograms: BCTEMP PROTEUS Programmer’s Reference

Subroutine BCUVEL (IBC,FBC IEQ,IMIN IMAX,IBOUND)

Called by Calls Purpose
BCGEN BCGRAD Compute x-velocity boundary conditions.
BCMET
Input
DEL Computational grid spacing in sweep direction.
IBASE, ISTEP Base index and multiplication factor used in computing one-

dimensional index for two-dimensional array.

IBC, FBC Boundary condition types and values for current sweep direction,
specified as IBC(1,J) and FBC(LJ), where 1 runs from 1 to N,,,
corresponding to the N,, conditions needed, and J =1 or 2, cor-
responding to the lower and upper boundarnies.

IBOUND Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.
IEQ Boundary condition equation number.
IMIN, IMAX Minimum and maximum indices in the sweep direction.
ISWELP Current ADI sweep number.
v Index in the “vectorized” direction, i,.
JI Inverse Jacobian of the nonorthogonal grid transformation, J-!.
* NOUT Unit number for standard output.
NR, NRU Array indices associated with the dependent variables p and pu.
RHO, U Static density p and velocity u at time level 7.
OQutput
A, B, C Coefficient submatrices A, B, and C at boundary IBOUND (row
1EQ only).
S Source term subvector S at boundary IBOUND (element IEQ
only).

Description

Subroutine BCUVEL computes coeflicients and source terms for x-velocity boundary conditions. The
linearized equations for the various general types of boundary conditions are developed in Section 7.0 of
Volume 1. The following sections apply these generalized equations to the particular x-velocity boundary
conditions in PROTEUS.!

11 In the following description, for the first ADI sweep the dependent variables should have the superscript *, re-
presenting the intermediate solution, and for the second ADI sweep they should have the superscript 7, representing
the final solution. For simplicity, however, only the superscript is used. The superscripts on all other variables
are correct as written.

PROTEUS 2-D Programmer’s Reference PROTELS Subprograms: BCUVEL 103

No Change From [nitial Conditions, Au =0

Applying equation (7.3) of Volume 1, and noting that (?g/@»é =J3g/0Q, we get simply
u o~ vk

Specified x-Velocity, u =f

Applying equation (7.5) of Volume 1,

A 1
G| - Laprt A(pu)] =

Specified Two-Point x-Velocity Gradient in Coordinate Direction, dulép = f

Applying equation (7.8) of Volume 1 at the ¢ = 0 boundary, and using two-point onc-sided differencing,
_‘/l,j[= Ap + 5 pu)] +J, j[———-Ap + — A(pu):]
o 0]
(AQfan +ul 7 uz,,
At the £ =1 boundary,
/ U o~ A AT J U an 1 A~ .
—Ix T A;) + e {pw) N -1 j+ M| T p Be + FA(PU) N =
+1
(At)f\n o + u\ -1,/ u;’l,j
Analogous cquations can easily be written for the n boundaries.

Specified Three-Point x-Velocity Gradient in Coordinate Direction, duld¢ = f

Applying equation (7.8) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differenc-
ing,

u A 1 5 "
A(pu)] RECY [- L ap+ A(pu)]zyj _
A(pu)] = 2(A§)f]"f1 + 3uy y 4u£/- + u;’j
At the ¢ = I boundary,
J “ans Lagw] —w — L ap+ L+ agu
‘Vl —Q,j P P (pu) N] —2,] 1\'] —],j P P)

A n
n+1 n n
A(pu)]]\,’l, = 2(AK f u.)vl -2,/ + 4u1\1] -1,j e 31‘1\!”]

Vl‘lj

U A
3.]1\‘11,1- [—_ —p* Ap +
Analogous equations can easily be written for the # boundaries.

Specified Two-Point x-Velocity Gradient in Normal Direction, Vusn =1

Applymg equation (7.12a) of Volume | at the ¢ =0 boundary, and using two-point one-sided differ-
encing,

104 PROTELS 2-D Subprograms: BCUVEL PROTELUS Programmer’s Reference

n
—Jl,j[2 Ap+— P pu)] +J21[——Ap+—A(pu)] j=

AL n+1 (éxnx'*'éy’ly)]d . n n n
——[- oﬂuu +u1,j—u

ml,j 1,j '"l,j 2, f

where
/52 N .2

M= 6xT Sy

and §, is the variably centered difference operator presented in Section 6.0 of Volume 1. At the {=
boundary,

U A 1 N U , A 1 "
—JNl—l,j['_TAp +—P_A(pu)],\'l-1,j+J"Vl'j[__f’_Ap ?-A(pu)]vj

As {’l-{-l (éx’?x'*'fy"ly)m'l,j 5" n n

ml\r],j N]v/ le,j VluNlrj + u-‘vl -1 ,j - uN]vj

Analogous equations can easily be written for the » boundaries.

Specified Three-Point x-Velocity Gradient in Normal Direction, Vus n=f

Applying equation (7.12a) of Volume | at the ¢ = 0 boundary, and using three-point one-sided differ-
encing,

u n 1 A un, Lo~
_3.]1,1' —?AP‘FFA(pu) 1j+4j2’j —"p_Ap+7A(pu) 2,1—

u 1 AT 2A¢ (‘fx'ix + :y"y)l,j
-’3.j[——p‘A3+7,-A(P“)]3j= o [fl?fl - m Sy ;| +

n n n
3u,.j—4u2,j+ U3’j

where
m= ~/5i + 6)2,

and 6, is the variably centered difference operator presented in Section 6.0 of Volume 1. At the {=1
boundary,

U 1 1 N " u
JN,—2,j[-_p—AP +7A(pu)] _2’j-4‘/N,—l,j[v Ap+—A(p)]\1_1]4—

| Y Enx+EMIN, . p
3‘,N1’j[_ ?AP +? (pu)] j_ mN}a/ le J mN,,j 6,114‘\’1‘_/' B

n n n
uNl -2,j + 4uN1 -1,j - 3uNl,j

Analogous equations can easily be written for the boundaries.

PROTEUS 2-D Programmer’s Reference PROTELUS Subprograms: BCUVEL 105

Linear Extrapolation of x- Velocity

Applying equation (7.14) of Volume | at the ¢ = 0 boundary,

[7E 1 o U a1 ! ~ T
Uy [— 5 8p+ A(pu)l’j -2/ [— 5 A+ FA(pu)]z)j +
U oA I AR n 5,7 n
S|~ Ar+ 5 Alpw) T - i ¥
At the ¢ = 1 boundary,
U A 1 A 7T U AN 1 “a T
. . e ha - 7 ; - 5 iy
Iy, _2’/[o Ap + o Alpw) My ‘JNI_I,,[o Ap + 5 A(pu)]v,~1,j+
U A 1 n n n n n
‘/-v],j [—_ 7 Ap -+ 7 A(pll) A\'l,j = — u-vl _2"/ + 211‘\;] _l,j —_ ugvl,j

Analogous equations can easily be written for the n boundaries.
Remarks

I. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. An error message is generated and execution is stopped if a non-existent x-velocity boundary condition
is specified.

106 PROTELS 2-D Subprograms: BCUVEL PROTELS Programmer’s Reference

Subroutine BCVDIR (lBC,FBC,IEQ,I.\H,\',L\LA\X,IBOUA\‘D)

Called by Calls Purpose
BCGEN BCGRAD Compute normal and tangential velocity boundary conditions.
BCMLET)
Input

+ ALPHAIL ALPHA2

Spatial difference centering parameters and x,, for the £ and %

DEL
DXI, DETA
IBASE, ISTEP

IBC, I'BC
IBOUND
IEQ

IMIN, IMAX
ISWEEP
ISWIRL

v

I, 12

J

METX, METY

NOUT
NR, NRU, NRV, NRW

Qutput

NIP

RIIO, U, V, W
A B, C

S

directions.
Computational grid spacing in sweep direction.
Computational grid spacing A& and Ax.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Boundary condition types and values for current sweep direction,
specified as IBC(LJ) and FBC(L)), where I runs from 1 to N,
corresponding to the N, conditions needed, and J =1 or 2, cor-
responding to the lower and upper boundaries.

Flag specifying boundary; | for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep dircction.
Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Index in the “vectorized” direction, 4.

Grid indices i and /, in the ¢ and 5 directions.

Inverse Jacobian of the nonorthogonal grid transformation, J .

Derivatives of sweep direction computational coordinate with re-
spect to x and y (or 7 if axisymmetric.)

Unit number for standard output.

Array indices associated with the dependent variables p, pu, pv,
and pw.

Cray PARAMETER specifying the DIMENSION size in the ¢
direction.

Static density p, and velocities u, v, and w, at time level n.

Coefficient submatrices A, B, and C at boundary IBOUND (row
IEQ only).

Source term subvector S at boundary IBOUND (element IEQ
only).

PROTELS 2-D Programmer’s Reference PROTELS Subprograms: BCVDIR 107

Description

Subroutine BCVDIR computes coefficients and source terms for normal and tangential velocity
boundary conditions. The linearized equations for the various general types of boundary conditions are
developed in Section 7.0 of Volume 1. The following sections apply these generalized equations to the

particular normal and tangential velocity boundary conditions in PROTEUS..12

Specified Normal Velocity, V.=r

The normal velocity is defined as

where

Therefore, for a ¢ boundary,
1
Vo= m (Exu+ éyv) =f
Similarly, for an n boundary,
1
V=57 On,u +)=,

where

2 2
m=‘\/'lx+’1y

Applying cquation (7.5) of Volume I, the lincarized boundary condition at a ¢ boundary becomes

Ji.j [_ fxu“"‘éyv

13 A fy At
A X _ pn+l n
s p o Apt+ 5 Alpw) + —= Alpv) g =i — Vi

An analogous equation can easily be written for the » boundaries.

2 In the following description, for the first ADI sweep the dependent variables should have the superscript *, re-
presenting the intermediate solution, and for the second A DI sweep they should have the superscript n, representing
the final solution. For simplicity, however, only the superscript n is used. The superscripts on all other variables
are correct as written.

108 PROTELS 2-D Subprograms: BCVDIR PROTELUS Programmer’s Reference

Specified Two-Point Normal Velocity Gradient in Coordinate Direction, 3V, [0¢ = [

Applying equation (7.8) of Volume 1 at the &

N, j

lej §Xu+§yv AS 4
— _ 5 b+
J?.,j EXu + fyv A
m - Ap +

2,/ P

+
QO+ VN~
At the ¢ = 1 boundary,

Iy —1j Eeu+ &y AD 4

My —1,j P
'l!\'l.j Eut éyv N
_ 5 b+

AX + VN, 2

5x &y
=X Apu) + A(pV)]
ix

(Vn)g,j

éfx
ix

n
= (Vin,j

Analogous equations can easily be wntten for the » boundaries.

5 n
(pu) + 5 A(pV)]

g n
A(pu) + 5 A(m’)] .
N]’j

n

+
1,/

2,j

é‘
X A(pr) + — A pv)] +
—l,j

Specified Three-Point Normal Velocity Gradient in Coordinate Direction, dV,[0¢ = [

= () boundary, and using two-point one-sided differencing,

Applying equation (7.8) of Volume 1 at the & = 0 boundary, and using three-point one-sided differenc-

ing,
hi I Eut &y AL+
— ml,j — > p
./z'j [~ éxll+§yv A’\
mz’j - P
J3,j [éxu‘*’ ny AA
m3,j - P

At the £ = 1 boundary,

2<A W 31 -

Iy [Gty
7 — A
Nl —2’.; L P
4 ‘INl—l,j [‘fxu+§yv AA
My —1,; | P P
JN)»j __ §Xu+§yv A;;
myLi L p
n+1
2885} -

£y A ¢ A
+ =5 Alpu) + —py— AlpY)

éx Sy
Alp u) + 5 A(m’)

éx &
A(pu) +75 A(PV)

ix Sy
(Pu) +5 A(;OV)

4(Vn)g,j + (Vn)g,j

fx Sy
A(PU) + 5 A(m)

—

fx

Tn

-1.]

Tn

d3,j

8]
=X Alpr) +—- A(PV)

Analogous equations can easily be written for the » boundaries.

PROTEUS 2-D Programmer’s Reference

PROTELUS

'1 -2,7
n
+
Ny —1.]
n

Ny J

(Vn)?vl -2,/ + 4(Vn)?vl -1,j 3(Vn):]\«'l,j

Subprograms: BCVDIR

109

Specified Two-Point Normal Velocity Gradient in Normal Direction, VV. en = f

Applying equation (7.12a) of Volume | at the & = 0 boundary, and using two-point one-sided differ-
encing,

n

A & A 14 A
Ap+ - M) +— Ay |+
LJ

& A 4 A
Ap + % Alpu) + —pi A(pv)] =
2.j

Jl,j §Xu+§yv
- ml‘j - 5

"y [S+ &y

fnz‘j P

Af +1 (:,r"x + fy’]y)l,j
oy [f'Z ST S [+ O = 075

where &, is the variably centered difference operator presented in Section 6.0 of Volume 1. At the ¢ = |
boundary,

In -1,) S+ &y & A ¢ A"
M =hLJ X y A X y
- - Ap+—XA LA +
My 1 [5 P+ Alpr) +— (pV)]Nl_l,j
Iy i Eutéy 3 A ¢ A
Ny J X ¥y A X y _
my l:_ o Ap + 5 Alpr) + p A(pV)]N,,j_

)3
A n+1 (sx’lx + é:)'n)’)"vl'j n n n
le,j l:levj - le,j 6’7(Vn)Nl'j + (Vn)Nl -Lj (l/n)N]’j

Analogous equations can easily be written for the 1 boundaries.

Specified Three-Point Normal Velocity Gradient in Normal Direction, VV en=f

Applying equation (7.12a) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differ-
encing,

3 ,{I'l// E B : S apt % Alpr) + % A(,L;\V)j Lt

4){ff/ T - :Xu: JiYYN % Alpu) + % A(p/\v)j :J _

,{Z j, : - éxu: 1 Ap + % Ap) + % A(,c;\v)j :,,- -
e [A A LU ,] F3V A+ VS

where 4, is the variably centered difference operator presented in Section 6.0 of Volume 1. At the & = |
boundary,

110 PROTELS 2-D Subprograms: BCVDIR PROTELS Programmer’s Reference

Jyv o Eu+ &y £
N =2,/ x yWooa o Sx 0) A
— Ap + = Alpu) + — A(pV) -
ml\'l =2,j L P P P ‘vl -2,j
Iy 1 Eu+ iy n
Sp—hJ X ¥ A 7
- Ap + A(pu) + ——A(pv +
,an -1,J P P = x -1,
Iy Eu+ &y 5 ¢ i
N J =X y /\ Sx y
32 — A(pu) + 2 A(pv) =
My L P P R
2AZ o Caoxtmdy,)
mAth 1V1,./ le,j

Analogous cquations can casily be written for the # boundarics.

Linear Extrapolation of Normal Velocity

Applying equation (7.14) of Volume 1 at the { =0 boundary,

Y Sty éx ¢,
my| TP Ap + A(pu)+—-A(pV)
S [St dy "
m | - 5 ——A(Pu) A(PV)
S [&utéy fx ¢
ol Ap + =X Alpu) + — A(pV)
- (Vn)T,j + 2(Vn)2 . ()3 o
At the & = | boundary,
j\" —2 B é u+é v f é
LS} WJ X y X
iy 2 | 7] Ap + A(pu) + ——A(pV)
I 4 T Eu+éy 5 ¢y W
1 »J X y A X
- A —A
29 g L 2 (o) + (pV)
Jv i Eu+ iy ¢y
R R N E L) +——A(pv>
le,j |

(V)AV _2J+2(V) —1] (Vn)N,,j
Analogous equations can casily be written for the n boundaries.

Specified Tangential Velocity, V, = f

boundary, the tangential velocity is defined as
Vo= Vi+w

where V,, the velocity in the 4 direction, is defined as

Fora¢

V,=Jul+v = Vs
1
=27 (= u+ &)

and

PROTELUS 2-D Programmer’s Reference

-

(V)M,} Vv, 2+ 4V -1, = 3V,

PROTELS Subprograms: BCYDIR

111

2 | 22
m=/¢{x+ ¢
Theretore, for a ¢ boundary,
, ! 2 2. 291)2
V=7 [(— S+ &) +miw /
Similarly, for an » boundary.
1 2 227152
Vi=—51 [(nyu— V) +mtw]
where
_—

m= \/ ryi + r;i

Applying equation (7.3) of Volume 1, the linearized boundary condition at a & boundary becomes
BVARY m AL S TV woor
(7,,,,‘) [- (Y s+ wh)Ap — Voo Alpr) + V, —= Alpy) +m—p—A(pw):" =
ij
VVRRUAYS
An analogous equation can casily be written for the » boundaries.

Specified Two-Point Tangential Velocity Gradient in Coordinate Direction, Vo =f

Applying equation (7.8) of Volume 1 at the & = 0 boundary, and using two-point one-sided differencing,

) n n
6 A s A
- (*;;/l",“) [— T (Va+whap — ¥, = Alp) + v, T" Alpv) + m - A(pw)J +
R 1o
n
J 2 PARA , 5)’ A
(7717!—7 >j } [— l;i (V'I +w)Ap - l’n 5 Alpu) + V — A(p») + m—— A(pw):L . =
< v

(A r)/in +1 + (VI)’]?,j _ (Vl)g,j

At the ¢ = 1 boundary,

n n
J) I: mo2 é)' n $x A w "
- - - Vy+w Ap =V, — Alpu) + V, == Alpv) + m— A(pw) +
(!Nl’l N =1 () ,7 P TP p M-
n

n
J m o2 5 x A w A
(m;‘){\‘1 ; [-7 (I " + W)Ap - V — A(pu) + V'I T A(pv) + m? A(pw):l v =
.) vy,

O + (VN - = (DN

Analogous equations can easily be written for the » boundaries.

Specified Three-Point Tangential Velocity Gradient in Coordinate Direction, 3V.|dd = f

Applying equation (7.8) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differenc-

mng,

112 PROTELUS 2-D Subprograms: BCYVDIR PROTELS Programmer’s Reference

"r <y

- 3(;1‘]——> - —EZ—(V,? +w) -V, —A(pu) A(pv) + m——A(pw) +

t /1, —1,J

J "I om &y N w A T
s —— s _X ' —e —

4< s >2J_ | - (1 whAp — v, A()+ V, = Alp¥) + m— A(pw)_zj

J T 2 : $x n w A |
(o (V +w)Ap Voo A(pu) + VVIT Apy) + m-g- A(pw) =

1 3,j L —3.J

ADRTT 31— 40+ (V)3
At the ¢ = 1 boundary,
(J)n _—ﬂ(V2+w2)A;3 -V —é)LA(pAu)%- Vv 3A(,fv)+m—’iA(p%)_n -
mVy Ja il P n mp e P AN —2,)
n — —
A ¢ A , A
4(m’) - %’—(V,ﬁ +whAp - V,,TyA(pu) + V== Alpy) + m - B(pw) +
1—LJjL ANy -1,
J [‘: ":x " w N

" ——(V +w)Ap -V, ——A(pu)+ w5 Alpv) + m—- Alpw) =

t /NLTL ANLJ

1
2(A§)fn+ (V,)N ;A)N -1,j 3(V1)rf:rl,j
Analogous equations can easily be written for the » boundaries.

Specified Two-Point Tangential Velocity Gradient in Normal Direction, VV,« n=f

Applying equation (7.12a) of Volume 1 at the ¢ =0 boundary, and using two-point one-sided differ-

encing,
J n m 5 2 A éy A V fx A w A n
7) _T(Vn+w)Ap_VnTA(pu)+ = Alpy) + m - Alpw) +
2 L.J
n
J m 2 2\ AN & o Sx
(pa)zj,:_T(V'?+W)Ap—V'I > Al + 7, A(pv)+m pr):]
A¢ 1 (Exnx + éyy]y)l,j
m ; [f]n+ - m ‘5;7(Vr)?,j + (Vt)rll,j - (V[);,j
where 8, is the variably centered difference operator presented in Section 6.0 of Volume 1. At the { =
boundar;
oundary,
J " m 2 AR é)’ N :x " w N i
- Py) . _T(V'?+w)Ap— Vn—?’—A(pu)+ Vn—p—A(pV)'f'm?A(pW) +
¢t SN L) ’;Vl 1J
Y —ﬂ(V2+w2)AA—V—:LA(Au)+V~§—X—A(Av)+m1A(W | =
mV,) ; p \n P=VnTp B n"p B p P Vi
Ny, vy,

Exnx + ‘fy’fy);\'l,j

myy,j

Analogous equations can easily be written for the » boundaries.

PROTELS 2-D Programmer’s Reference

PROTEUS Subprograms: BCVDIR

6r7(Vr)?\'l,jJ + (Vt)rflvl -1.,;j (Vl)

n
Ny J

113

Specified Three-Point Tangential Velocity Gradient in Normal Direction, VV,en = f

Applyving equation (7.12a) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differ-
encing,

’ o £ ¢ -
J n 2 2 , Sy A , & ” , A
_3(Py) -—%—(['n-l—w)Ap— IWTA(pU)-f- [,'7 px A(P")+m’_p'A(W) +
VAN 1,
J " T om,a A <y A Ee oA W A~ 1"
4(I) - ———(Vn +w)Ap — Vn 7 Alpu) + V,] - Alpv) + m-—- A{pw) —
mbe /oL 1,
n - 4 o —
J M s A Sk A w AT
(mv,)3} G ([q+“)Ap Y, - Alpu) + ¥, 3 Alpy) + m > A(pw)_laj“

JAS
my j

(‘fx'Tx + 5y'7y)l W

~n+1
[/1,/‘ -

my

6y](Vr)’ll,j} + 3(Vr)?,j - 4(Vt)?,j + (Vt);,j

where 6, is the vanably centered difference operator presented 1n Section 6.0 of Volume 1. At the ¢ =1

boundary,

n

n

J P S A e v S A - m A
(mV’).\',—Z,j__ (V4)5 V5 Ml + ¥y S M) 4 A | e
4, j n [~ m I/z 2A\ VéyA/\ V‘fXAA WA/*"l ’
(mVI Nl_u__T(p Hw)Ap =V, == Apw) + V, —- Alpy) + m - (pW)-Jx\"l—l,j+
(LY [—mrewmas— v 2 g+ v 22 a0 WAAJ
mv, N,,j__T(y tw)Bp =V, == Alpw) + V, o= Alpv) + m - (pw)J_,v,,,-—
2A¢ +1 (“fx"x + :yny)Nl,j
o [xc,,, e 8V | = O VR 1= M

Analogous equations can casily be written for the » boundaries.

Linear Extrapolation of Tangential Velocity

Applying cquation (7.14) of Volume | at the ¢ = 0 boundary,

=N

n r
J 2 2 Sy oA ¢ A A
(mv,)1 | =G (Va+w')ap =V, Alpw) + V, - Blpv) + m - Blpw) | —
JL di;
J T m 2 2% A ‘fy A fx A w A "
2 m, . __P_(V'? +w)Ap - V’?TA(pu)_i- VWTA(pv)+m7A(P‘V) +
JL 1,
LV [=202 e - v, 2 s+ v, 2 s+ m 2 agh | =
mV, Jo, L P P = Vyp B np Ale 5 Alp 43j_

- (Vl)?,j + 2(Vt)g,j - (Vr)g,j

At the £ = | boundary,

114 PROTELS 2-D Subprograms: BCYDIR PROTELUS Programmer’s Reference

n — . _
J m .2 IS S soSx N W B
(mV > I B (l,,+w)Ap—l,,p Alpu) + V',) A(px)+mpA(pw) ’ .
/N -2 L AN =2,
N " [m 12 4 wDAS — 1 iA " v Sx Aoy LN \71»7
< ml/ - —_p—-(n + W) P n p (pl(’)+ nop (p‘)+’n P (r’”‘) . +
! N -1LjL JN =1,
J n B iv " £ A 1
m o2 2348 g " ;5 w o
(mV, >\, J '—_p‘(l',, +w)Ap — 1”,,_,)—A(P1() +V, pX Alpv) + m—p—A(pW) y j:
Ny L dn,

s\ n \n
— (VN 22+ 2Vy, <15~ (Vn,.j
Analogous equations can easily be written for the » boundaries.
Remarks

I. This subroutine uses one-dimensional addressing of two-dimensional arrays. as described in Section 2.3.

2. An error message is generated and execution is stopped if a non-existent normal or tangential velocity
boundary condition is specified. 4

PROTELS 2-D Programmer’s Reference PROTELUS Subprograms: BCYDIR 115

Subroutine BCVVEL (IBC,FBC,IEQ,IMIN IMAX IBOUND)

Called by Calls Purpose
BCGEN BCGRAD Compute y or r-velocity boundary conditions.
BCMET
Input
DEL Computational grid spacing in sweep direction.

[BASE, ISTEP

IBC, FBC

IBOUND

IEQ
IMIN, IMAX
ISWEEP
v
JI
* NOUT
NR, NRU, NRV

RHO, U,V
Output

A, B, C

S

Description

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Boundary condition types and values for current sweep direction,
specified as IBC(I,J) and FBC(I,J), where I runs from 1 to N
corresponding to the N, conditions needed, and J =1 or 2, cor-
responding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.
Current ADI sweep number.

Index in the “vectorized” direction, i.

Inverse Jacobian of the nonorthogonal grid transformation, /.
Unit number for standard output.

Array indices associated with the dependent variables p, pu, and
pv.

Static density p, and velocities v and v, at time level n.

Coefficient submatrices A, B, and C at boundary IBOUND (row
IEQ only).

Source term subvector S at boundary IBOUND (element 1EQ
only).

Subroutine BCVVEL computes coefficients and source terms for y or r-velocity boundary conditions.
The linearized equations for the various general types of boundary conditions are developed in Section 7.0
of Volume 1. The following sections apply these generalized equations to the particular y or r-velocity

boundary conditions in PROTEUS.13

13 In the following description, for the first ADI sweep the dependent variables should have the superscript *, re-
presenting the intermediate solution, and for the second ADI sweep they should have the superscript n, representing
the final solution. For simplicity, however, only the superscript n is used. The superscripts on all other variables

are correct as written.

116 PROTELS 2-D Subprograms: BCVVEL PROTELUS Programmer’s Reference

No Change From Initial Conditions, Av =0

Applying equation (7.3) of Volume 1, and noting that (3g/0() = Jdg|3Q, we get simply
VoA 1 ~ "
Jij [-5 Ap + ra A(pv):li,j =

Specified y or r-Velocity, v= [

Applying cquation (7.5) of Volume 1,
1
J,-,j[— Ap +5 pv)] = n+ nj

Specified Two-Point y or r-Velocity Gradient in Coordinate Direction, ov[0p = [

Applying equation (7.8) of Volume 1 at the { =0 boundary, and using two-point onc-sided ditferencing,

VoA 1 ~ 1" Voan 1 AT
_J]’j[—FApﬁ»?A(pv)]]j+J2’j[——b—Ap+7A(pV)]2j:
AT+
At the ¢ = 1 boundary,
o Temans Lagwl +un [- Las+Lac ol -
TNy -1, p SP T R |y Ly TN PO Y v
+1
(Aff\lr'll j +vV -1, A”z/,,j

Analogous equations can casily be written for the # boundaries.

Specified Three-Point y or r-Velocity Gradient in Coordinate Direction, ov[d¢ = [

Applying equation (7.8) of Volume 1 at the & = 0 boundary, and using three-point one-sided differenc-
ing,

A n
_3Ju.[— A+ A(pv)] +4)y [Y ap+ —}7 A(pv)l -

n

Ji,j [— % Ap + v A(pv):L _ Ar)fln+l + 3v1n’j - 4"5!,1' + v;’j
’j

At the & = 1 boundary,

/ EEDVIN v | —4J —LAA+~1—A(AV)_H +
SN =2,) P Y P2 (p) N, =2, N]—l,_/; P P P P N —LLJ

v n 1 A +1 n n n
LYY [-5 A+ A(PV)]A = 2AE N — Vn, =2, BN -1, T N
Analogous equations can easily be written for the 5 boundaries.

Specified Two-Point y or r-Velocity Gradient in Normal Direction, Vvan = [

Applying equation (7.12a) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differ-
encing,

PROTEUS 2-D Programmer’s Reference PROTEUS Subprograms: BCVVEL 117

n n
A 1 "
—JI,,[> 8p+ A(pv)] +Jz,,-[~ > AP+ 7A<pv>] =
J 2,j

A¢ nel Gt M) 51 n
my fl/ m n l/ +‘11 V2,j

where

[e2 4 &2

mz\/ ¥

and §, is the variably centered difference operator presented in Section 6.0 of Volume 1. At the & = |
boundary,

v 1 Lo T
—JN,_I,,-[— A+ (pv)] U+J~,,,[— 5 A3+7A(pv>], =
1_ s B

p Vi
_ae far (Sxne + Y, 3, vy + vy — Wy
my j N J ’an,j n'NLT N ~1,j N,

Analogous equations can easily be written for the n boundaries.

Specified Three-Point y or r-Velocity Gradient in Normal Direction, Vven = f

Applymg equation (7.12a) of Volume | at the £ =0 boundary, and using three-point one-sided differ-
encing,

VoA 1 AT VoA 1 AT
—3.],,/- [-2 Ap + > A(pV)]l,j +44; [—% Ap + ra A(pv)]z’j —
V oA 1 A 2A¢ n+l ($xnx + fy’?y)],j n
J3,j[—7Ap +7A(pv)]3,j: m],j [ﬁ ; ml,j (5,7v]’j +

n n n
3V1,j - 4V2'j+ V3,j

where
2 2
2+ e

and 8, is the variably centered difference operator presented in Section 6.0 of Volume 1. At the ¢ =1
boundary

[-zassLagn] —an 2 apedagn] 4
Vl _2'./ P p P P ‘V __2 i Nl—l’-] P P P P Nl —1,]
2Af [fﬂ+l (fx'lx + éyr,y)Nl,j 5 n } _

n
3.]‘\7“] [Ap + — A(V)] j Nl J mtvl‘j V]vllej
v + 4 -3y
Ny =2, j N] =1j N, J

Analogous equations can easily be written for the n boundaries.

118 PROTELS 2-D Subprograms: BCVVEL PROTEUS Programmer’s Reference

inear Extrapolation of v or r-Velocity
L FExtrapolat Velocit

Applying equation (7.14) of Volume 1 at the ¢ = 0 boundary,

2,j
n

Vv A 1 " 4 9 Vv A 1 A‘ "
J | =2 A+ LAy t oy + 27—
3,j o Ap 5 Alpy) 3 Vi, iV
Joa | ~2assLagn] —ae [Lasetagw] o«
N =2, p BPT, N : N - p 2P Tp N -1,
J 2 aprtagn] =-w + 200 VA
Ny J p Ap 5 Aley) Nod o YN =20 TN 1 T YN
Analogous equations can easily be written for the # boundaries.

Specified Flow Angle, tan'(v/u) = [

This boundary condition can be rewritten as
v
W= tsz
where f'1s the specified flow angle. Multiplying by pu,
(tan f)pu—pv=10
Applying equation (7.5) of Volume 1 to the above equation, we get

g [Can T A} = AW]] = = (tan)] + (o)

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. An error message 1s generated and execution is stopped if a non-existent p-velocity boundary condition
1s specified.

PROTELS 2-D Programmer’s Reference PROTEUS Subprograms: BCVVEL 119

Subroutine BCWVEL (IBC,FBC,IEQ,IMIN IMAX IBOUXND)

Called by Calls Purpose
BCGEN BCGRAD Compute swirl velocity boundary conditions.
BCMET
Input
DEL Computational grid spacing in sweep direction.

IBASE, ISTEP

IBC. FBC
IBOUND
1IEQ
IMIN, IMAX
ISWEEP
v
I

+ NOUT

NR, NRU, NRW
RHO, U, W

Output
A B, C

Description

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Boundary condition types and values for current sweep direction,
specified as IBC(1,J) and FBC(1,)), where I runs from 1 to N,

. q’
corresponding to the V,; conditions needed, and J =1 or 2, cor-

responding to the lower and upper boundaries.

Flag specifying boundary; 1 for lower boundary, 2 for upper
boundary.

Boundary condition equation number.

Minimum and maximum indices in the sweep direction.
Current ADI sweep number.

Index in the “vectorized” direction, i.

Inverse Jacobian of the nonorthogonal grid transformation, J-1.
Unit number for standard output.

Array indices associated with the dependent variables p, pu, and
pw.

Static density p, and velocities » and w, at time level n.

Coefficient submatrices A, B, and C at boundary IBOUND (row
IEQ only).

Source term subvector S at boundary IBOUND (element 1EQ
only).

Subroutine BCWVEL computes coefficients and source terms for swirl velocity boundary conditions.
The linearized equations for the various general types of boundary conditions are developed in Section 7.0
of Volume 1. The following sections apply these generalized equations to the particular swirl velocity
boundary conditions in PROTEUS. ¥

!4 In the following description, for the first ADI sweep the dependent variables should have the superscript *, re-
presenting the intermediate solution, and for the second ADI sweep they should have the superscript 7, representing
the final solution. For simplicity, however, only the superscript n is used. The superscripts on all other variables

are correct as written.

120 PROTELS 2-D Subprograms: BCWYEL PROTELUS Programmer’s Reference

No Change From I[nitial Conditions, Aw =0

Applying equation (7.3) of Volume 1, and noting that Oglaé = J8g/tQ, we get simply
WA 1 A~ T

1,7

Specified Swirl Velocity, w=f

Applying equation (7.5) of Volume 1,
n
i

w 1 N 1
D = 84t || =

Specified Two-Point Swirl Velocity Gradient in Coordinate Direction, dw|0¢ = [

Applying equation (7.8) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differencing,

n

w 1 »

n

1 al
—J,,j[—-;‘,’-A,S +7A(pw)]

n+1 n n
AON] +wj—w;

1,

At the ¢ = | boundary,

W A 1 A WA 1 .
L, [—p A+ FA(PW)]M iy +Jn,,) [—5 dp+ 7A(pW)]

n+1 n n
(ASUN,j + W, —1,j~ WN,,j

Ny J

Analogous equations can easily be written for the boundaries.

Specified Three-Point Swirl Velocity Gradient in Coordinate Direction, dw|d¢ = [

Applying equation (7.8) of Volume 1 at the ¢ = 0 boundary, and using three-point one-sided differenc-
ing,
woasetagw] +an [-2as+Lagw] -
Pt Alew) | 40 p APt AW |
n

w
)
Ll = 2ap+Lagw| =248t + 3wk —aw) +wl
3,) o Ap+ 5 (PW)3j— W, j Wi, AWy it Wy
At the ¢ = | boundary,

n

— 4y, 1~[—£A3+—1—A(p/:w)] +
Ny —2,j b P P Ny -1,J

n
+1 n n
;= 288w — Wy, 2, Wy, 1 W

Lo AT
n

W 1 n
My, [~ 5 Ap+ A(pw)]Nl v

Analogous equations can easily be written for the » boundaries.

Specified Two-Point Swirl Velocity Gradient in Normal Direction, Vw en = f

Applying equation (7.12a) of Volume 1 at the ¢ = 0 boundary, and using two-point one-sided differ-
encing,

PROTELUS 2-D Programmer’s Reference PROTELS Subprograms: BCWVEL 121

l n

woor, Lo AT WA N -
—Jl,j[__p_Ap+—[7A(‘0w)]]’j+'lz‘j[—?Ap+7A(p“):| =

2,j
4
4l (EX’7X+5_V'7)')1,/‘5 Tl wl =Wy
m]j Y " W1, j L)W

where
>
m= \/5; + &5

and &, 1s the variably centered difference operator presented in Section 6.0 of Volume 1. At the & =
boundary,

woon | ~ woon | N
‘JN, ~1. [vy Ap + —p—A(pn)].Vl iy + ‘/Np/ [- Ap + —ﬁ—A(pu)]Nhj =

= £
A& R (0 PR RS I " n n
My Mg My AN W -1 TV

N
Analogous equations can easily be written for the y boundaries.

Specified Three-Point Swirl Velocity Gradient in Normal Direction, Vw=n = [

Applying equation (7.12a) of Volume 1 at the & = 0 boundary, and using three-point one-sided differ-
encing,

n

WA i o " W oA 1 -

n ZAf 1 éxr]x + éyr,y)l,j
J”[TNty A(pw)] Ly [:fl“ m S | *

n n
3\171,1' - 4W2,] + W3’j

where
m=./ 6)2(+ fi

and &, 1s the variably centered difference operator presented in Section 6.0 of Volume 1. At the & = |
boundary,

LA 1 N " "
'/‘\'1 Yy [~ 5 Ap + ra A(ph)]vl T 4'IN) —1j [Ap +— A(pu)] vio1 +

n ZAé 1 (éXVIX + fyr]y)N W/
3‘/-‘\'1J [Ap o A(pW)] NisJ - l:fcl+/ My : 6’7W:'1»j -

nJ\Il,_/

W\ —7j+4h\/ 3“«\ ,/

Analogous equations can easily be written for the # boundarics.

122 PROTELUS 2-D Subprograms: BCWVEL PROTEUS Programmer’s Reference

Linear Fxtrapolation of Swirl Velocity

Applying equation (7.14) of Volume 1 at the ¢ = 0 boundary,
A A]" 5/ [woan 1 A A):I’I
w - il — + — w +
(P)],j 2,_/ P p P p 2"/

n
n n

A(PW)] = Wan + 2w2,j — w3 ;

3.J

WA 1 ~ T WA 1 A
J‘Vl -2,j [- ——p— AP + _p“ A(PW)] ~2) - 2\]"\"] -1,/ [- o Ap + ‘_p— A(pW):l
WA N n n n

JNlnj [— 7 Ap + '7)— A(pw‘):]:’v i = — M/Nl -2,/ + ZWNI N lel-j

Analogous equations can easily be written for the » boundaries.

Specified Flow Angle, tan~'(wju) = f

This boundary condition can be rewritten as
w
w = tanf
where fis the specified flow angle. Multiplying by pu,
(tan f)pu—pw=10
Applying equation (7.5) of Volume 1 to the above equation, we get

Jy s [Can)7 AT = Alpw)}] = — (tan f)} 1+ (o)

Remarks

Ny —1,j

+

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. An error message is generated and execution is stopped if a non-existent swirl velocity boundary con-

dition is specified.

PROTELS 2-D Programmer’s Reference

PROTELS Subprograms: BCWVEL

123

Subroutine BLIN1

Called by Calls Purpose
TURBBL Compute inner layer turbulent viscosity along constant ¢ lines.

Input

* APLLS Van Driest damping constant A*.

* CB Constant B i the Spalding-Kleinstein inner layer model.

* CNL Exponent # in the Launder-Priddin modified mixing length for-
mula for the inner region of the Baldwin-Lomax turbulence
model.

* CVK Von Karman mixing length constant used in the inner region of
the Baldwin-Lomax and Spalding-Kleinstein models.

* ILDAMP I'lag for 1.aunder-Priddin modified mixing length formula in the
Baldwin-Lomax inner region model.

* INNER Flag for type of inner region model.

* IWALL2 Flags indicating whether or not the y boundaries are walls.

11 Gnid index i in the ¢ direction.

MU Laminar coefficient of viscosity u,.

MUT Outer layer turbulent viscosity coefficient (u,),... along constant ¢
lines.

* N2 Number of grid points N, in the » direction.

* RER Reference Reynolds number Re,.

RHO, U, V, W Static density p, and velocities u, v, and w.

VORT Total vorticity magnitude.

X, Y Cartesian coordinates x and y, or cylindrical coordinates x and r.
MUT Turbulent viscosity coefficient p, along constant & lines.

Description

Subroutine BLIN1 computes the inner layer turbulent viscosity coefficient (i,),,., along constant ¢ lines
(1., due to walls at y = 0 and/or n = 1.) Two different inner region models are available - the model of
Baldwin and Lomax (1978), and the model of Spalding (1961) and Kleinstein (1967). These are described
in Section 3.2 of Volume 1.

If both » boundaries are solid walls, (12,),..., 15 computed separately for each wall, and it is assumed that
the two inner regions do not overlap. For each wall, the computation is done inside a loop starting at the
wall and moving outward. Once the inner region value exceeds the outer region value, the loop is exited.

Thus #{ = (#I)ZM!f until (#!)mnzr 2 (l‘ll)autzrl then #{ = (#f)Duftf'

The distribution of g, across the intersection of the inner and outer regtons is smoothed using the fol-
lowing formulas. For the » = 0 wall,

124 PROTELS 2-D Subprograms: BLIN1 PROTEUS Programmer’s Reference

1
(P()jb = 1 [(.ur)jb -1t 2(ﬂf)jb + (#1)jb +1]
]
(), 1= vy Ln)y, <o + 20,y + ()]
where the boundary between the inner and outer regions falls between between j=/ — 1 and j=j. It

should be noted that the unsmoothed value of (i), is used in the second smoothing formula, not the
smoothed value from the first formula. Similarly, for the # = 1 wall,

1
(Pz)jb = ? [(“r)jb +1 + 2(.“[)jb + (#[)jb »l]
1
(g, 41 = Y [(Nf)jb 421 2ug;, 4 + (1),
where the boundary between the inner and outer regions falls between between j=j, + 1 and j = j,.

Remarks

I. To avoid the possibility of floating point errors, the value of |Q used to compute ¢ and w' s set

to a minimum of 10-1°,

w

PROTEUS 2-D Programmer’s Reference PROTEUS Subprograms: BLIN1 125

Subroutine BLIN2

Called by Calls Purpose
TURBBL Compute inner layer turbulent viscosity along constant » lines.

Input

* APLLS Van Driest damping constant 4+,

* CB Constant B in the Spalding-Kleinstein inner layer model.

* CNL Exponent # in the Launder-Priddin modified mixing length for-
mula for the inner region of the Baldwin-Lomax turbulence
model.

* CVK Von Karman mixing length constant used in the inner region of
the Baldwin-Lomax and Spalding-Kleinstein models.

DUMMY l(_)uter layer turbulent viscosity coefficient (u),,,.. along constant 5
ines.

+ ILDAMP Flag for Launder-Priddin modified mixing length formula in the
Baldwin-Lomax inner region model.

* INNER Flag for type of inner region model.

* IWALLI Flags indicating whether or not the ¢ boundarnies are walls.

12 Grid index j in the » direction.
MU Laminar coefficient of viscosity u,.
* NI Number of grid points N, in the ¢ direction.
* RER Reference Reynolds number Re,.
RIIO, U, V, W Static density p, and velocities u, v, and w.
VORT Total vorticity magnitude.
X, Y Cartesian coordinates x and y, or cylindrical coordinates x and r.
Qutput
DUMMY Turbulent viscosity coefficient y, along constant » lines.

Description

Subroutine BLIN2 computes the inner layer turbulent viscosity coefficient (i,)...., along constant # lines
(ie., due to walls at £ =0 and/or ¢ = 1.) The procedure is exactly analogous to that used in subroutine

BLINI.

126 PROTELS 2-D Subprograms: BLIN2 PROTELUS Programmer’s Reference

BLLOCK DATA Subprogram

Called by Calls Purpose
Set default values for input parameters, plus a few other parameters.
Input
None.
Output

All namelist input parameters, plus:

CCP1, CCP2, CCP3, CCP4

CKl, CK2

CMUI, CMU2

GC
IBCELM

IBYUP

ICONV
IGINT

ITBEG
KBCPLER

NC, NXM, NYM, NZM, NEN

NIN

NR, NRU, NRV, NRW, NET

RAX

TAU

PUT.

PROTEUS 2-D Programmer’s Reference

Constants in formula for specific heat. (8.53 x 10, 3.12 x 10¢,

2.065 x 106, 7.83 x 10%)'3

Constants in formula for laminar thermal conductivity coefficient.
(7.4907 x 10-3, 350.0)

Constants in formula for laminar viscosity coefficient. (7.3035

x 1077, 198.6)"
Proportionality factor g, in Newton's second law. (32.174)"

Flags for elimination of off-diagonal coefficient submatrices re-
sulting from three-point boundary conditions in the ¢ and y di-
rections at cither boundary; 0 if elimination is not necessary, 1 if
itis. (2*0,2+0)

Flags for updating boundary values from first sweep after second
sweep; 0 if updating is not necessary, 1 if it is. (0,0)

Convergence flag; 1 if converged, 0 if not. (0)

Flags for grid interpolation requirement for the ¢ and » directions;
0 if interpolation is not necessary, 1 if it is. (0,0)

The time level n at the beginning of a run. (1)

Flags for spatially periodic boundary conditions in the ¢ and y
directions; 0 for non-periodic, 1 for periodic. (0,0)

Array indices associated with the continuity, x-momentum,
y-momentum (or r-momentum if axisymmetric), swirl momen-
tum, and energy equations. (1,2,3,5,4)

Unit number for standard input. (5)

Array indices associated with the dependent vanables p, pu, pv,
pw, and F;. (1,2,3,54)

1 for two-dimensional planar flow, and the local radius r for
axisymmetric flow. (NMAXP*1.0)

Initial time value . (NTOTP*0.0)

1S These values are for reference conditions specified in English units. Values for SI units are set in subroutine IN-

PROTEUS Subprograms: BLOCK DATA 127

Description

‘The BLOCK DATA routine is used to set default values for all the input parameters, plus various other
parameters and constants. The defaults for all the input parameters are given as part of the standard input
description in Section 3.1 of Volume 2. The values for the other parameters and constants set in BLOCK
DATA are given in parentheses in the above output description. Note that some of these values assume
Inglish units are being used to specify reference conditions. If ST units are being used, these values are re-
defined in subroutine INPU'T.

Remarks

.. Most of the default values are defined directly, but some, like the reference viscosity MUR, are set equal
to zero and defined in subroutine INPUT if not specified by the user.

128 PROTELS 2-D Subprograms: BLOCK DATA PROTELUS Programmer’s Reference

Subroutine BLKOUT (I1PT,I12PT)
Called by Calls Purpose
ADI Print coefficient blocks at specified indices in the ¢ and » directions.
AVISCI
AVISC2
BCGEN
FILTER
Input
A, B, C Coefficient submatrices A, B, and C
* [HSTAG Flag for constant stagnation enthalpy option.
ISWEEP Current ADI sweep number.
* ISWIRL Flag for swirl in axisymmetnc flow.
IIPT, I2PT Indices for printout in the ¢ and # directions.

NC, NXM, NYM, NZM, NEN Array indices associated with the continuity, x-momentum,
y-momentum (or r-momentum if axisymmetric), swirl momen-
tum, and energy equations.

NEQ Number of coupled equations being solved, N,,.
* NOUT Unit number for standard output.

S Source term subvector S.

Qutput

None.

Description

Subroutine BLKOUT prints the coefficient block submatrices A, B, and C, and the source term sub-
vector S at the grid points specified by 11PT and I2PT. This is the routine that actually prints the output
for the IDEBUG(1) through IDEBUG(4) options.

PROTELUS 2-D Programmer’s Reference PROTELS Subprograms: BLKOUT 129

Subroutine B1 K3

Called by Calls Purpose
ADI FILTER Solve 3x3 block tridiagonal system of equations.
Input
A, B, C Coefficient submatrices A, B, and C
NPTS Number of grid points in the sweep direction, V.
NV Number of gnd points in the “vectorized” direction, \V,.
S Source term subvector S.
Output
S Computed solution subvector.

Description

Subroutine BLK3 solves a block tridiagonal system of equations with 3x3 blocks using the block matrix
version of the Thomas algorithm. Subroutine FILTER is called in an attempt to eliminate any zero values
on the diagonal of the submatrix B at the two boundaries. These can occur when boundary conditions are
specified using the JBC and/or IBC input parameters, depending on the initial conditions and the order of

the boundary conditions.

The algorithm is described in Section 8.2.1 of Volume 1. For clarity, that description involves additional

“new” matrices D, E, and AQ’. In Fortran, however, we can save storage by overwriting B, C, and S. The
following table relates the algorithm as implemented in Fortran to the notation used in Volume 1, for the

first ADI sweep. An exactly analogous procedure is followed for the second sweep.

Step

In Fortran

In Volume 1 Notation

1

Dx=Bl

2a LU decompose B,, storing result in B,

2b Solve B\E, = C, for E, using LU decomposition of
B,, storing result in C,

LU decomposition of D,
E, = D;IC,

3c LU decompose B, storing result in B,

3d Solve BE, = C, for E, using LU decomposition of B,
storing result in C,

3e Solve BAQ! =S, for AQ! using LU decomposition
of B, storing result in S,

2c Solve B,Aé; =8, for Aé; using LU decomposition Aé{ = Dy'S§,
of B,, storing result in S,
Fori=21to N,
3a Compute B, — A,C,_,, storing result in B, D =B -AE_,
3b Compute S, — AS,_,, storing result in S, S, — A,A(A)Ll

LU decomposition of D,
E =D;'C,

AQ; =D7\(S, - AAQL,)

AQN, = AQ’,VI

Fori=N,—-1t1o I,
5 Compute S, — CS,_,, storing result in S,

AQ, = AQ. —EAQ,.,

130 PROTELS 2-D Subprograms: BLK3

PROTELUS Programmer’s Reference

Remarks

|. The notation used in the comments in BLK3 is consistent with the notation used in the description of
the algorithm in Volume 1.

The Thomas algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an
ADI procedure, however, if the coefficients and source terms are stored in both directions, the algorithm
can be vectorized in the non-sweep direction. That is the reason for the first, or IV, subscript on the
A, B, C, and S arrays. It was added simply to allow vectorization of the BLK routines. This increases
the storage required by the program, but greatly decreases the CPU time required for the ADI solution.

bo

PROTELUS 2-D Programnier’s Reference ~ PROTELS Subprograms: BLK3 131

Subroutine BLK3P

Called by Calls Purpose
ADI Solve 3x3 periodic block tridiagonal system of equations.
Input
A, B, C Coefficient submatrices A, B, and C
NPTS Number of grid points in the sweep direction, V.
NV Number of grid points in the “vectorized” dircction, N,.
S Source term subvector S.
QOutput
S Computed solution subvector.

Description

Subroutine BLK3P solves a periodic block tridiagonal system of equations with 3x3 blocks. An efficient
algorithm similar to the block matrix version of the Thomas algorithm is used to solve the equations. The
algorithm is described in Section 8.2.2 of Volume 1. For clarity, that description involves additional “new”

matnces D, E, F, G, and A()'. In IFortran, however, we can save storage by overwriting A, B, C, and S.
The following table relates the algorithm as implemented in Fortran to the notation used in Volume 1, for
the first ADI sweep. An exactly analogous procedure is followed for the second sweep.

Step In Fortran In Volume 1 Notation
la D,=B,
Ib F,=Cy,
2a LU decompose B,, storing result in B, LU decomposition of D,
2b Solve B,E, = C, for E, using LU decomposition of E,=D;'C,

B,, stoning result in C,
2c Solve B,G, = A, for G, using .U decomposition of G, =Ds'A,
B,, storing result in A,
2d Solve B,AQ) =S, for AQ, using LU decomposition AQ; =D5'S,
of B,, storing result in S,

132 PROTELUS 2-D Subprograms: BLK3P PROTELUS Programmer’s Reference

Step In Fortran In Volume | Notation
FFori=31to N, — 1,
3a Compute B, — A C,_,, storing result in B, D =B —-AE,,
3b Compute S, — AS,_|, stonng result in S, S, — AAQL,
3¢ Compute —A A, |, storing result in A, —-AG,
3d [.U decompose B, storing result in B, LU decomposition of D,
Je Solve BE, = C, for E, using L.U decomposition of B, E. =D 'C,
storing result in C,
af Solve B,G, = A, for G, using LU decomposition of B, | G, =D'AG, |
storing result in A,
3g Solve BAQ! = S, for AQ! using I.U decomposition AQ! =D, S, ~ AAQ)
of B, storing result in S,
i1
3h Compute By, — Cy A, ;, storing result in By By, — 2FG,
j=2
=1 A
3 Compute S, — CyS,,, storing result in Sy Sy, — 2F,AQ]
r=2
3 Compute —Cy, C,_;, stoning result in Cy F,=-F_E ,
4a Compute Ay _, + Cy, _,, storing result in Ay, Gy =Dy (Cy = Ay Gy)
4b Compute Ay + Cy,, storing result in Cy Fy i=Ay —Fy Ey
Nt
4c Compute By — Cy Ay storing result in By, D, =By - X kG,
-2
Nyl "
4d Compute Sy, — Cy Sy, _, storing result in Sy, Sy, — 2 FAQ]
i=2
de LU decompose By, storing result in By, [.U decomposition of Dy,
A N N Nyt n
4 Solve By AQ'y, =Sy, for AQYy, using LU decompos- | AQ’y, =Dy (Sy — X F.AQ)
ition of liNl, storing result in Sy, 2
5 AQNI = AQ,N]
6 Compute Sy, | — Ay, Sy, storing result n Sy A(A\)Nl = A(A)'N1 1 — Gy, ,,IA(f)zVl
Fori=N,—21t0 2,
7 Compute S, - AS, — CS,,,, storing result in S, AQ, = AQ! — GAQ, —~EAQ,
8 | Sets, =S, AQ, = AQ,,
Remarks

. The notation used in the comments in BLK3P is consistent with the notation used in the description
of the algorithm in Volume 1.

!\J

‘The solution algorithm is recursive and therefore cannot be vectonized in the sweep direction. In an

ADI procedure, however, if the coefficients and source terms are stored in both directions, the algorithm
can be vectorized in the non-sweep direction. That is the reason for the first, or 1V, subscript on the
A, B, C, and § arrays. It was added simply to allow vectonzation of the BILK routines. 'This increases
the storage required by the program, but greatly decreases the CPU time required for the ADI solution.

PROTEUS 2-D Programmer’s Reference

PROTELUS Subprograms: BLK3P

133

Subroutine BLK4

Called by Calls Purpose
ADI FILTER Solve 4x4 block trdiagonal system of equations.
Input
A, B, C Coefhicient submatrices A, B, and C
NPTS Number of grid points in the sweep direction, N.
NV Number of grid points in the “vectorized” direction, N,.
S Source term subvector S.
Output
S Computed solution subvector.

Description

Subroutine BLK4 solves a block tridiagonal system of equations with 4x4 blocks using the block matrix
version of the Thomas algorithm. Subroutine FILTER is called in an attempt to eliminate any zero values
on the diagonal of the submatrix B at the two boundaries. These can occur when boundary conditions are
specified using the JBC and/or IBC input parameters, depending on the initial conditions and the order of
the boundary conditions.

The algorithm is described in Section 8.2.1 of Volume 1. For clarity, that description involves additional

“new” matrices D, E, and AQ’. In Fortran, however, storage is saved by overwnting B, C, and S. The al-
gorithm is identical to that used in subroutine BLK3. See the description of that subroutine for a table
relating the algorithm as implemented in Fortran to the notation used in Volume 1.

Remarks

1. The notation used in the comments in BLK4 is consistent with the notation used in the description of

the algorithm in Volume 1.

2. The Thomas algonithm is recursive and therefore cannot be vectorized in the sweep direction. In an
ADI procedure, however, if the coefficients and source terms are stored in both directions, the algorithm
can be vectorized in the non-sweep direction. That is the reason for the first, or IV, subscript on the
A, B, C, and S arrays. It was added simply to allow vectorization of the BLK routines. This increases
the storage required by the program, but greatly decreases the CPU time required for the ADI solution.

134 PROTELUS 2-D Subprograms: BLK4

PROTELUS Programmer’s Reference

Subroutine BLK4P

Called by Calls Purpose
ADI Solve 4x4 periodic block tridiagonal system of equations.
Input
A B, C Coefficient submatrices A, B, and C
NPTS Number of grid points in the sweep direction, N.
NV Number of grid points in the “vectorized” direction, N,.
S Source term subvector S.
Output
S Computed solution subvector.
Description

Subroutine BLK4P solves a periodic block tridiagonal system of equations with 4x4 blocks. An efficient
algorithm similar to the block matrix version of the Thomas algorithm is used to solve the equations. The
algorithm is described in Section 8.2.2 of Volume 1. For clarity, that description involves additional “new”

matrices D, E, F, G, and A(A)’. In Fortran, however, storage is saved by overwriting A, B, C, and S. The
algorithm is identical to that used in subroutine BLK3P. See the description of that subroutine for a table
relating the algorithm as implemented in Fortran to the notation used in Volume 1.

Remarks

1. The notation used in the comments in BLK4P is consistent with the notation used in the description

of the algorithm in Volume 1.

2. The solution algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an
ADI procedure, however, if the coefficients and source terms are stored in both directions, the algorithm
can be vectorized in the non-sweep direction. That is the reason for the first, or IV, subscript on the
A, B, C, and S arrays. It was added simply to allow vectorization of the BLK routines. This increases
the storage required by the program, but greatly decreases the CPU time required for the ADI solution.

PROTEUS 2-D Programmer’s Reference

PROTEUS Subprograms: BLK4P

135

Subroutine BI.KS

Called by Calls Purpose
ADI FILTER Solve 5x5 block tnidiagonal system of equations.
Input
A B, C Coefficient submatrices A, B, and C
NPTS Number of gnid points in the sweep direction, N.
NV Number of grid points in the “vectorized” direction, V..
S Source term subvector S.
Output
S Computed solution subvector.

Description

Subroutine BLKS solves a block tridiagonal system of equations with 5x5 blocks using the block matrix
version of the Thomas algorthm. Subroutine FILTER is called in an attempt to eliminate any zero values
on the diagonal of the submatrix B at the two boundaries. These can occur when boundary conditions are
specified using the JBC andjor IBC input parameters, depending on the initial conditions and the order of
the boundary conditions.

The algorithm is described in Section 8.2.1 of Volume 1. For clarity, that description involves additional

“new” matrices I, E, and AQ’. In Fortran, however, storage is saved by overwriting B, C, and S. The al-
gonthm is identical to that used in subroutine BLK3. See the description of that subroutine for a table
relating the algorithm as implemented in Fortran to the notation used in Volume 1.

Remarks

I. The notation used in the comments in BLKS5 is consistent with the notation used in the description of

the algonthm in Volume 1.

2. 'The Thomas algonithm is recursive and therefore cannot be vectorized in the sweep direction. In an
ADI procedure, however, if the coefficients and source terms are stored in both directions, the algorithm
can be vectorized in the non-sweep direction. That is the reason for the first, or IV, subscript on the
A, B, C, and S arrays. It was added simply to allow vectorization of the BLK routines. This increases
the storage required by the program, but greatly decreases the CPU time required for the ADI solution.

136 PROTELS 2-D Subprograms: BLKS

PROTEUS Programmer’s Reference

Subroutine BLKSP

Called by Calls Purpose
ADI Solve 5x5 periodic block tridiagonal system of equations.
Input
A B, C Coefficient submatrices A, B, and C
NPTS Number of grid points in the sweep direction, N.
h\' Number of grid points in the “vectorized” direction, N,.
S Source term subvector S.
QOutput
S Computed solution subvector.

Description

Subroutine BLK 5P solves a periodic block tridiagonal system of equations with 5x5 blocks. An efficient
algorithm similar to the block matrix version of the Thomas algorithm is used to solve the equations. The
algorithm is described in Section 8.2.2 of Volume 1. For clarity, that description involves additional “new”

matrices D, E, F, G, and Aé’. In Fortran, however, storage is saved by overwriting A, B, C,and S. The
algorithm is identical to that used in subroutine BLK3P. See the description of that subroutine for a table
relating the algorithm as implemented in Fortran to the notation used in Volume 1.

Remarks

1. The notation used in the comments in BLKSP is consistent with the notation used in the description
of the algorithm in Volume 1.

2. The solution algorithm is recursive and therefore cannot be vectorized in the sweep direction. In an
ADI procedure, however, if the coefficients and source terms are stored in both directions, the algorithm
can be vectorized in the non-sweep direction. That is the reason for the first, or IV, subscript on the
A, B, C, and S arrays. It was added simply to allow vectorization of the BLK routines. This increases
the storage required by the program, but greatly decreases the CPU time required for the ADI solution.

PROTEUS 2-D Programmer’s Reference PROTELS Subprograms: BLKSP 137

Subroutine BLOUTI

Called by Calls Purpose
TURBBL ISAMAX Compute outer layer turbulent viscosity, using the algebraic Baldwin-
ISAMIN [.omax model, along constant ¢ lines.

Input

* APLLS Van Driest damping constant 4 *.

* CB Constant B in the Klebanoff intermittency factor.

* CCLAU Clauser constant X in the Baldwin-Lomax outer region model.

* CCP Constant C,, in the Baldwin-Lomax outer region model.

* CKLEB Constant Cy,, in the Klebanoff intermittency factor.

* CNA Exponent 7 in the formula used to average the two outer region
i, profiles that result when both boundaries in a coordinate di-
rection are solid surfaces.

* CWK Constant C,, in the Baldwin-Lomax outer region model.

* IWALL2 Flags indicating whether or not the # boundaries arc walls.

11 Gnd index i in the & direction.
MU Laminar coefficient of viscosity u,.
* N2 Number of gnd points N, in the # direction.
* RER Reference Reynolds number Re,.
RHO, U, V, W Static density p, and velocities u, v, and w.
VORT Total vorticity magnitude.
X, Y Cartesian coordinates x and p, or cylindrical coordinates x and r.

Output

LWAKE2 Grid index j in the » direction used as the origin for computing
length scales for free turbulent flows.
MUT Outer layer turbulent viscosity coefficient (w,),,,., along constant ¢

Description

lines.

Subroutine BLOUT] computes the outer layer turbulent viscosity coefficient (u,),,,., along constant ¢
lines (i.c., due to walls at n = 0 and/or 5 = 1, or due to a free turbulent flow in the ¢ direction) using the
algebraic eddy viscosity model of Baldwin and Lomax (1978). The mode! is described in Section 3.1 of
Volume 1.

In BLOUT]I, the values and locations of] V1, and [V[,,,,,, are found first. Next, if a solid wall exists
at n = 0 and/or n = 1, the parameter F,,,, is computed for each wall. If neither n boundary is a solid wall,
a free turbulent flow in the ¢ direction is assumed. In this case F,,,, is computed using the procedure de-
scribed in Section 3.1 of Volume 1.

Finally, if a solid wall exists at n = 0 or at # = 1, but not both, or if neither 4 boundary is a solid wall,
the value of (u,),... is computed directly. If both » boundaries are solid walls, the two computed values of

138 PROTELUS 2-D Subprograms: BLOUTI PROTELS Programmer’s Reference

F,

' . are combined using the averaging formula presented as equation (3.12) of Volume I, and the resulting
value is used to compute (1) e -

Remarks

cand F,,,.

1. The Cray BLAS routines ISAMAX and ISAMIN are used in computing | 17,,,” , ‘ IZ,,,,,

> If the maximum and minimum total velocities are equal, indicating a uniform flow along this particular
£ line, their locations are arbitrarily set equal to the middle index. This normally would occur only
during the first time step in a case with uniform initial velocity profiles.

and F,,, are set to a

NVl

mmn

3. To avoid the possibility of floating point errors, the values of |I7mx
minimum of 10-1°.

PROTELUS 2-D Programmer’s Reference PROTELUS Subprograms: BLOUT1 139

Subroutine BLOUT?2

Called by Calls Purpose
TURBBL ISAMAX Compute outer layer turbulent viscosity, using the algebraic Baldwin-
ISAMIN Lomax model, along constant » lines.
Input

* APLLUS Van Dnest damping constant 4+,

* CB Constant B in the Klebanoff intermittency factor.

* CCLAU Clauser constant K in the Baldwin-Lomax outer region model.

* CCp Constant C, in the Baldwin-Lomax outer region model.

* CKLEB Constant Cy,,, in the Klebanoff intermittency factor.

* CNA Exponent n in the formula used to average the two outer region
u, profiles that result when both boundaries in a coordinate di-
rection are solid surfaces.

* CWK Constant C,, in the Baldwin-Lomax outer region model.

* IWALLI Flags indicating whether or not the ¢ boundaries are walls.

12 Grid index j in the # direction.
MU Laminar coefficient of viscosity u,.
* NI Number of grid points N, in the ¢ direction.
* RER Reference Reynolds number Re,.
RHO, U, V, W Static density p, and velocities u, v, and w.
VORT Total vorticity magnitude.
X, Y Cartesian coordinates x and y, or cylindrical coordinates x and r.

Output

LWAKEI Grid index i in the ¢ direction used as the origin for computing
length scales for free turbulent flows.

DUMMY Outer layer turbulent viscosity coefficient (u,),,,, along constant »
lines.

Output

Description

Subroutine BLOUT2 computes the outer layer turbulent viscosity coefficient () our, along constant »
lines (i.e., due to walls at ¢ = 0 andjor & = 1, or due to a free turbulent flow in the n direction) using the
algebraic eddy viscosity model of Baldwin and Lomax (1978). The procedure is exactly analogous to that

used 1n subroutine BLOUTI.

140 PROTELS 2-D Subprograms: BLOUT2

PROTELUS Programmer’s Reference

Subroutine BYUP

Called by Calls Purpose
EXEC BCGEN Update first sweep boundary values after second sweep.
EQSTAT
SGEFA
SGESL
Input
* ALPHALI Spatial difference centering parameter a, for the ¢ direction.
DXI1 Computational grid spacing A¢.
IBVUP Flags for updating boundary values from first sweep after second
sweep; 0 if updating is not necessary, 1 if it 1s.
* ISWIRL Flag for swirl in axisymmetric flow.
I Inverse Jacobian of the nonorthogonal grid transformation, /.
KBCPER Flags for spatially periodic boundary conditions in the ¢ and 7
directions; 0 for non-periodic, 1 for periodic.
NEQ Number of coupled equations being solved, N,,.
NEQP Cray PARAMETER specifying maximum number of coupled

NR, NRU, NRV, NRW, NET
NPT2

N1, N2
NIP

RHO, U, V, W, ET

'RHOL, UL, VL, WL, ETL

XIX, XIY, XIT

Qutput

PROTEUS 2-D Programmer’s Reference

ALPHA

DEL
IBASE, ISTEP

ISWEEP
v
METX, METY, METT

equations allowed.

Array indices associated with the dependent variables p, pu, pv,
pw, and Ep.

N, for non-periodic boundary conditions, N, + 1 for spatially pe-
riodic boundary condition in #.

Number of grid points N, and ,, in the £ and directions.

Cray PARAMETER specifying the DIMENSION size in the ¢
direction.

Static density p, velocities u, v, and w, and total energy F; at time
level n at all grid points.

Static density p, velocities «, v, and w, and total energy F; at time
level 7+ 1 at all interior grid points.

Metric coefficients &,, &, (or ¢, if axisymmetric), and £,.

Spatial difference centering parameter o for the sweep direction
being updated.

Computational grid spacing for the sweep direction being updated.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

ADI sweep number for sweep direction being updated.
Index in the “vectorized” direction, i,.

Derivatives of computational coordinate, for the sweep direction
being updated, with respect to x, y (or 7 if axisymmetric), and ¢.

PROTEUS Subprograms: BVUP 141

NPTS Number of grid points A in the sweep direction being updated.
NV Number of grid points in the “vectorized” direction, N,

RHOL, UIL, VL, WL, ETL Static density p, velocities u, v, and w, and total energy £ at time
level n+ | at boundary points from first sweep.

Description

Subroutine BVUP updates boundary values from the first, or ¢, sweep after the second, or 5, sweep.
In general, this is necessary when gradient or extrapolation boundary conditions are used in the ¢ direction.
Some updating is also necessary when spatially periodic boundary conditions are used. The procedure is
described in Section 8.3 of Volume 1 for all cases.

Remarks

1. The corner values of p and E; are updated by linearly extrapolating from the two adjacent points in the
¢ and » directions, and averaging the two results. Note that this extrapolation is done in computational
space. Grid packing in either direction is thus not taken into account. The corner values of the ve-
locities are updated by doing the same type of extrapolation. Instead of averaging, however, the ex-
trapolated velocity whose absolute value 1s lower is used. This was done to maintain no-slip at duct
inlets and exits.

2. Subroutines SGEFA and SGESL are Cray LINPACK routines. In general terms, if the Fortran arrays
A and S represent A and S, where A is a square N by N matrix and S is a vector with N elements, and
if the leading dimension of the Fortran array A is LDA, then the Fortran sequence

CALL SGEFA (A,LDA,N,IPVT,INFOD)
CALL SGESL (A,LDA,N,IPVT,S,0)

computes A™!'S, storing the result in S.

1492 PROTELS 2-D Subprograms: BVUP PROTELUS Programmer’s Reference

Subroutine COEFC

Called by Calls Purpose
EXEC Compute cocfficients and source term for the continuity equation.
Input
ALPHA Spatial difference centering parameter o for the sweep direction.

ALPHAIL, ALPHA2

DEL

DTAU

DXI, DETA

ETAX, ETAY, ETAT
IAXI

IBASE, ISTEP

ISWEEP
ISWIRL
v

I1, 12

JI

METX, METY, METT

NC
NEQ
NPTS

NR, NRU, NRV, NRW, NET

RAX

RHO, U,V
RHOL
THC

XIX, XIY, XIT
Y

Output

A B, C

PROTEUS 2-D Programmer’s Reference

Spatial difference centering parameters «; and ay, for the ¢ and »
directions.

Computational grid spacing in sweep direction.

Time step Ar.

Computational grid spacing A¢ and An.

Metric cocfficients #,, 7, (or y, if axisymmetric), and »,.
Flag for axisymmetric flow.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Index in the “vectorized” direction, i,.

Grid indices i and J, in the ¢ and » directions.

Inverse Jacobian of the nonorthogonal gnd transformation, J~!
(times the radius r for axisymmetric flow.)

Derivatives of sweep direction computational coordinate with re-
spect to x, y (or r if axisymmetric), and t.

Array index associated with the continuity equation.
Number of coupled equations being solved, N,.
Number of grid points in the sweep direction, N.

Array indices associated with the dependent varnables p, pu, pv,
pw, and .

| for two-dimensional planar flow, and the local radius r for
axisymmetric flow.

Static density p, and velocities u and v, at time level n.
Static density p from previous ADI sweep.

Parameters 6, and 8, determining type of time differencing for the
continuity equation.

Metric coefficients &,, &, (or &, if axisymmetnic), and £,.

Radial coordinate r for axisymmetric flow.

Cocfficient submatrices A, B, and C at interior points (row NC
only).

PROTELUS Subprograms: COEFC 143

S Source term subvector S at interior points (clement NC only).

Description

Subroutine COEFC computes the coefficients and source term for the continuity equation. Equations
(8.5a-b) in Volume | represent, in vector form, the four governing difference equations for the two ADI
sweeps for 2-D planar flow. The elements of the inviscid flux vectors E and F are given in Section 2.0 of
Volume 1, and the clements of the viscous flux vectors Ey, Ey,, etc, are given in Appendix A of Volume

I The JTacobian coctlicient matrices 8E/3Q, 0k, [0Q, etc., are given in Section 5.0 of Volumz 1. Using
all of these equations, the differenced form of the continuity cquation for 2-D planar flow may be written
for the two ADI sweeps as'®

Sweep 1 (£ direction)

B A n A n - n
A (}IAT 0]":1 A x aEl N x (7 :1 N %
A/)[+_(T-:}:—0A,)A; — X A AQi—l +(2a— 1) VA AQI +(1“~0() 1/\ AQH—I =
S Q /i Q /; Q /Sy
AT /\‘ /\‘ n 02 An—1
7, (6:E) +6,F)) + Tra; 0
Sweep 2 (y direction)
A n A n A n
o 0,A1 oF, A p oF, Ay ok, A
Apj -+ UA-F—U)—AT —al ——— AQj_] + (2(1 - 1) ~ AQJ + (1 — a) = AQ]-H
‘ 2 Q J=1 9Q J 9Q J+1
A;}‘

In the above cquations, the subscripts i and j represent grid point indices in the ¢ and # directions. For
notational convenience, terms without an explicitly written { or j subscript are understood to be at / or /.

The vector of dependent variables is
AN . T
Q=—1[p pu pv Ef]

"The appropriate elements of the flux vectors are given by

Y
L]
E, = 7 loud+ pvéy, + p¢/]

2 1
Fy=— lpuns + pymy + pn/]

‘The clements of the Jacobian cocfficient matrix E/3Q for the continuity cquation are

oF,
A = [61 ix iy 0]
9Q

'* These cquations are written assuming the energy equation is being solved. For a constant stagnation enthalpy case,
the total energy £ would not appear as a dependent variable, and the Jacobian coefficient matrices would have

only three elements.

144 PROTELS 2-D Subprograms: COEFC PROTELS Programmer’s Reference

The Jacobian coefficient matrix 612]/6(”) has the same form as 6fil /6(), but with ¢ replaced by 7.

As an example of how these equations are translated into Fortran, consider the A(pu/J) term on the left

A

hand side for the first sweep. This is the second element of Q, so using the second element in af-llléQ we
get

0,(At);
(1+8,)A¢
0,(A1); ;
(1 + 0,)A
0,(A1);
(11 0,)A¢

A(IV,NC,NRU) = (=) &x)iz1,)

B(IV,],NC,NRU) = (2o — (&

C(IV,LNC,NRU) = (1— (€1,

The equations for axisymmetric flow are devcloped in Appendix B of Volume 1. The axisymmetric
continuity equation for the two ADI sweeps is given by

Sweep 1 (£ direction)

A n A n A n
At 0,A7 1 JE, A oE, A oE, Ao
Ap, +-a-:—9—)—ATT —al r —= AQ,_ +Ra—-Dl r —% AQ, + (1 —a)l r —= AQi | =
v oQ -1 eQ i oQ i+1

92
1+6;

1 A A I An—
- L6 Ep+ 8, FD] + ap™!

Sweep 2 (i direction)

A n A n A n
A4 BT i) Ao - r B)adr 4 - Fi) ade ap
o+t TaoAas 7| AT T i1 & — r —= ! —a)l r — iv1 | =8P
(14 8)An Q /. 2Q /, aQ /i

where now

A . 4T
Q=—[p pu pv pw £[7]

|

ﬁx [pué, + pvé, + péil

1>

1
J
L
J

1 [puny + pyn, + Pl

oE, 9
A =[¢ &x ¢, 0 0]
Q

As in 2-D planar flow, the Jacobian coefficient matrix 6?1/66 has the same form as 6f£,/66, but with ¢
replaced by #.

Note that the equations for 2-D planar and axisymmetric flow are very similar. In the axisymmetric

equations, the radius r appears as an additional coefficient in front of the flux vectors E and F, and in front

17 These equations are written for the general case with swirl. For a non-swirl case, the swirl momentum pw would
not appear as a dependent variable, and the Jacobian coefficient matrices would have only four elements.

PROTEUS 2-D Programmer’s Reference PROTELUS Subprograms: COEFC 145

of the Jacobian cocfficient matrices OE,/0Q and oF 1/6Q. In addition, 1/r appears in front of every term in
the equation except the Ap terms. In PROTELUS, the Fortran variables are defined in such a way that, for
many terms, the same coding can be used for both 2-D planar and axisymmetnic flow. Unfortunately, this
may make some of the coding a little confusing. It is hoped that this detailed description, when compared
with the source listing, will help make things clear.

In COEFC, the coefficients of the left hand side, or implicit, terms are defined first. The implicit terms
for the second ADI sweep have exactly the same form as for the first sweep, but with ¢ replaced by 5. By
defining DEL, METX, METY, and METT as the grid spacing and metric coefficients in the sweep direc-
tion, the same coding can be used for both sweeps. The variable RAX is equal to 1 for 2-D planar flow,
and the radius r for axisymmetric flow. This adds the 7 in front of the Jacobian coeflicient matrices for
axisymmetric flow, but has no effect for 2-D planar flow. The 1 {r coefficient in front of each term will be
added later. In this section of code, the coefficient of Ap (part of B(IV,I.NC,NR)) is set equal to 7, not |
as it should be. This will be corrected later.

The source term, or nght hand side, for the first sweep is defined next. The difference formulas used to
compute the source term are the same as those used for the implicit terms. These formulas are presented
in Section 6.0 of Volume 1. For axisymmetric flow, the Fortran variable JI, which is normally defined as
1//, 1s temporarily redefined as r/J before the COEF routines are called. This automatically accounts for
the r coefficient in front of all the flux vectors in the source term. The 1{r coefficient in front of each term
will be added later. This definition of JI adds an r in front of the Ap~! term that should not be there. This
will also be corrected later.

The coding for the source term for the second sweep, which consists only of Ap*, comes next. The de-
finition of J1 also adds an r in front of this term that should not be there.

And finally, for axisymmetric flow, the entire equation is divided by the local radius ». This adds the
1/r coefficient where it should be added, and removes the r in front of the Ap terms.

Remarks

This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

o

The subscripts on the Fortran variables A, B, C, and S may be confusing. The first subscript is the
index in the non-sweep (i.e., “vectorized”) direction, and the second subscript is the index in the sweep
direction. For sections of the code that apply to both sweeps (i.e., the implicit terms and the division
by r at the end), the first two subscripts are written as (IV.1). For sections of the code that apply only
to the first sweep, the first two subscripts are written as (I2,I1). For sections that apply only to the
second sweep, they are written as (11,12). The third subscript on A, B, C, and S corresponds to the
equation. And, for A, B, and C, the fourth subscript corresponds to the dependent variable for which
A, B, or C is a coefficient.

146 PROTELS 2-D Subprograms: COEFC PROTELUS Programmer’s Reference

Subroutine COEFE

Called by Calls Purpose
EXEC Compute cocfficients and source term for the energy equation.
Input
ALPHA Spatial difference centering parameter « for the sweep direction.

* ALPHAIL, ALPHA2

DEL

DPDRHO, DPDRU, DPDRYV,
DPDRW, DPDET

DTAU

DTDRHO, DTDRU, DTDRY,
DTDRW, DTDET

DXI, DETA

ETAX, ETAY, ETAT
* JAXI

IBASE, ISTEP

* JEULER
ISWEEP

* ISWIRL

* ITHIN
Iv
I1, 12
1

METX, METY, METT

MU, LA, KT

NEN

NEQ

NPTS

NR, NRU, NRV, NRW, NET
P, T

PRR
RAX

Spatial difference centering parameters o, and «,, for the £ and »
directions.

Computational grid spacing in sweep direction.
Derivatives dp/dp, p[d(pw), Op/d(pv), Op[d(pw), and dp/dE;.

Time step Ar.
Derivatives 7/0p, 3T|d(pu), 8T|3(pv), 0T/8(pw), and OT|OEr.

Computational grid spacing A¢ and An.
Metric coefficients #,, », (or », if axisymmetnic), and 7,.
Flag for axisymmetric flow.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Flag for Euler calculation.

Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Flags for thin-layer option.

Index in the “vectorized” direction, i,.

Gnid indices i and j, in the ¢ and #» directions.

Inverse Jacobian of the nonorthogonal grid transformation, J/-!
(times the radius r for axisymmetric flow.)

Derivatives of sweep direction computational coordinate with re-
spect to x, y (or r if axisymmetric), and ¢.

Effective coefficient of viscosity u, effective second coefficient of
viscosity 4, and effective coefficient of thermal conductivity k at
time level n.

Array index associated with the energy equation.
Number of coupled equations being solved, V,,.
Number of grid points in the sweep direction, V.

Array indices associated with the dependent varables p, pu, pv,
pw, and E;.

Static pressure p and temperature T at time level n.
Reference Prandtl number Fr,.

| for two-dimensional planar flow, and the local radius r for
axisymmetric flow.

PROTEUS 2-D Programmer’s Reference PROTEUS Subprograms: COEFE 147

* RER Reference Reynolds number Re,.

RHO, U, V, W, ET Static density p, velocities u, v, and w, and total energy £ at time
level n.
* THE Parameters 6,, 8,, and 6, determining type of time differencing for
the energy equation.
TL Static temperature T from previous ADI sweep.
UL, VL, WL, ETL Velocities u, v, and w, and total energy £, from previous ADI
sweep.
XIX, XIY, XIT Metric cocefficients &, ¢, (or &, if axisymmetric), and ¢&,.
Y Radial coordinate r for axisymmetric flow.
Output
A, B, C Coeflicient submatrices A, B, and C at mnterior points (row NEN
only). |
S Source term subvector S at interior points (element NEN only).
Description

Subroutine COEFE computes the coefficients and source term for the energy equation. Equations
(8.5a-b) in Volume 1 represent, in vector form, the four governing difference equations for the two ADI

sweeps for 2-D planar flow. The elements of the inviscid flux vectors E and F are given in Section 2.0 of
Volume 1, and the elements of the viscous flux vectors ﬁyl, I'AIVZ, etc., are given in Appendix A of Volume

1. The Jacobian coefficient matrices 61::/66, 6ﬁyl/06, etc., are given in Section 5.0 of Volume 1. Using
all of these equations, the differenced form of the energy equation for 2-D planar flow may be written for
the two ADI sweeps as

Sweep 1 (£ direction)

n A n A n

A x 0,47 6ﬁ4 A 3) M A oE, N
A(ET)I' +m —al —— AQ[—I + (2 — 1) — AQI- +(1—a) x AQ‘-_H
2 Q /., Q /; Q Jin

a,A Ae non. Ax Y
- (1 +0])2;A§)2 [(fi—l + £)'e,8Q,_, - (fior + 26+ 1) 787 AQ; + (fi+ fiD) g,-HAQiH]:
2

At A A At A A n
“Treoy (5:Eq +6,F,) + Teoy [06(Ey)a + S,(Fy,)s]
(1+86)Ar A A n ;AT A oA n-1 0, Ape
“ng*[‘s;(EVzh"‘én(FVZ)a] —W[éf(r:ygﬁon(n)a] t T3 ay AT

148 PROTELS 2-D Subprograms: COEFE PROTELS Programmer’s Reference

Sweep 2 (n direction)

A n A n A n
A 0,A oF oF F LA
AE + | —a 2 AQL, + a1 — AQI+ (1 —a)| — AQ;
77 (14 0)An A -1 A J « J+1
Q /i Q J; Q /i
0,4t . P A o n nAAn nn A’\n _
B 7 (Ut +) gh8Q = U + 2 + 1) '8 AQ) + (U + f11) & Q=
(1+02)2(An)
AE}

In the above equations, the subscripts i and j represent grid point indices in the & and % directions.
hout an explicitly written i or j subscript are understood to be at i or .

notational convenience, terms wit

For

On the left hand side, fis the coefficient of /8¢ (or 8/dm, depending on the sweep) in the OI;IVX/(W(A) (or

ok, 10Q) Jacobian coefficient matrix. Similarly, g is the term in the parentheses following 8/3¢ (or o)

in the aEvl/ﬁ(A) (or ai‘vl/aé) Jacobian coefficient matrix.

The vector of dependent variables is

Ao
Q=L pu pov EAT

The appropriate elements of the inviscid flux vectors are given by

- -

By = 4 [(Ep+ put, + (Ep+ pywe, + Er &)

F, = — [(Ex+ puny + (Ex+ p)vny, + Erny]

The appropriate elements of the non-cross derivative viscous flux vectors are

A 2u+ 2
(Er)e = 7o {(”2 L8202, + E0750 + (s + Dk 10y

+ 51807+ 50D+ Gk :iﬂ';}

o 1 1 fQu+d o 9 2,2
(FV1)4 = 7 Re,. { 2 [ﬂx(u)'7 + ny(v)r,] + (u' + A)'lx”ly(”v)n
) 2,2 k 2 2.
+ 5 DXy +)yl + Pr. (nx +) fn}
And the appropriate elements of the cross derivative viscous flux vectors are

A 1 1
(LVZ)d = 7 Re
. r

|:2,u(f,cnxuu,7 + fyr]yvvn) + A& (g, + nyuvy,) + A&, (00, + U.VW'?)

k -
+ #fx(’?yvu,, + ’leV,,) + “éy(']yuuy’ + 'Ixm’,,) + —1—)7; (fx'lx + ‘fyr!y) [,7]

PROTEUS 2-D Programmer’s Reference

PROTEUS Subprograms: COEFE

149

" 1 1 , ;
(FV2)4 =7 Re l:z#('lx‘fxuug + ’7y£yW§) + "-'Ix(fxuug + fyuvg) + /-'ly(ngug + fng)
r

+ #nx(:yvug + éxvvg) + “ny(‘fyuuf + 5xw§) + 7)1'(',_ ("xfx + nyéy)Tg:]
r

The elements of the Jacobian cocfficient matrix JE[0Q for the inviscid terms in the encrgy equation are

aﬁa B ap op op ap
66‘['f‘<f2‘5;> Bt A g Aty ff“(”aTT)]

where f{ = u¢, +v¢, and f; = (E; + p)/p.

The elements of the Jacobian coefficicnt matrix @E,, /0Q for the viscous terms are

N A% N A
6(14.,,1)4 1 0]3,,l OEVl éEV] d T
2T Re : ; ; "o \ e
oQ 4 oQ 41 0Q 42 0Q 43 T
where
N
] o 2 2
_ O (e N_ o (v w 0 (T
~ __axJCa,t(p) ay}'aé(p) zaxyag(P)+a06§(6p)
Q /a4
E,
1 o u 0 Y 0 oT
2 (B v () o ()
% /., o9& d¢ &\ d(pu)
Ias
oE,
| u v 0 oT
2 () (2 ()
b /.. a¢ d& &\ d(pv)

doe = 2+ DER + pgl

Uy = uéx+ (2u+ D
Exy = (n+ A)fxéy
k
t0 =5 (G +8)

The Jacobian coefficient matrices 6!3,/66 and @(IA:V])4/6(A) have the same form as 6é4/66 and 6([3;,1)4/06,
but with ¢ replaced by ».

As an example of how these equations are translated into Fortran, consider the A(pu//) term on the left

hand side for the first sweep. This is the second element of 6, so using the second element in 6]224/06 we
get for the inviscid term

150 PROTELS 2-D Subprograms: COEFE PROTEUS Programmer’s Reference

') - HI(AT)i,j ET+p ap

r\(lv,]"\EA\,A\RU) = W(—d){(p éx)(_],j + ’[(u‘f_x + v‘):y) a(pu) }i—l,]
e B8 Er+p- L. 0p

B(IV,LNEN,NRU) = T 0)A (22 — 1){(— ix)w_ +z[(“5x +v¢)) d(pu) L

CUVLNEN,NRU) =208 (Er+p 6) N
JLNEN) N —————— (1 -« — u v
(1+0,)A¢ P WATSW, X e i,
For the viscous terms on the left hand side, we use the second element in 6(ﬁyl)4/6(§, which 1s
1 0 u d v d oT
Re, [F () ey (7)1 005 (3(pw) ﬂ

There are three terms in that element. Thus, in turn, /= «,./Re,, a,,/Re, and «,/Re,, and g =u/p, v/p, and
dT|d(pu). To add the viscous contribution to this part of the A cocfficient submatrix, we thercfore set
0,(A1); ;

(1 + 0,)2(A8)* Re,)

{[(axx),-_l, RO) AR (R s - MRS (CORWAZCOR jJ(o0 >f—1 j}

AV INENNRU) = A(IV,LNEN,NRU) —

Similar equations may be wnitten for the B and C coefficient submatrices.

The equations for axisymmetric flow arc developed in Appendix B of Volume 1. The axisymmetric
energy equation for the two ADI sweeps is given by**

Sweep 1 (¢ direction)

A NS s \ - oFs \ e B\ ae
A + 2L ol r 25) AQ L +u-1r = JAQ (-0 r —= | 8Qu
(1 +62)4¢ 2Q /., 2Q /, 2Q Jin

BlAT 1
(1 +62a88°

T 1—?-192 —}’_ [5§(f [/‘55) +4,(r l/:‘5)]" 7 ﬁ’r()z _l— {éi[r (éVl)S] + 6'7[r (!I;Vl)‘s]}’l
6:A7

0 A A n A A n- 0 A
ﬂ%%“i Lo [r €]+l Ev)sl) -5 " {87 By)]+ 67 Fr s} L 1—:—%— AEx!

[(’z—lfu Fr Y8 AQLy — (riy S + 2r S+ rt)87 AQ, + (i + ’,+1ﬁ*1)n&"—«1501+|] =

Sweep 2 (» direction)

~on BIAT 1 af:S ’ n a‘:‘s ’ n af}S " “n
AMED) +———5 5| —alr— AQ |+ Qa—- 1 r — AQT+ (1 —a)| 1 — AQi
J (l +92)An r 2 J 2) 3 J
Q j-1 Q J Q j+

AT
(1 +0,)2(an)
AE;

1 A .)
a2 [(’;—lf;—l + 1, [V 8AAQ = (1 i + 2+ T [g AQT (S + rﬁ.f,,l)"g,"HAQLl] =

18 These equations are written for the general case with swirl. For a non-swirl case, the swirl momentum pw would
not appear as a dependent variable, and the Jacobian coeflicient matrices would have only four elements.

PROTELS 2-D Programmer’s Reference PROTELUS Subprograms: COEFE 151

where now

A T
Q=—lp pu pv pw Ef]

~ |-

A 1 v
Es= i LEr+ pué + (Ex+ pvé, + Ef €]

N

1
Fs= 7 [(Er+ pyum, + (Ex+ pvy, + Ern/]

A 2 +) r
(s = { 252 L0 + 8000+ e D + 08, 002 +)

R R SR e R rff)T;}

A 2u + A 3 7
(Fp)s = % Rle { & 3) [mzc(u“),7 + nf(vz),,] + (1 + Dnon, (), + An, — (pv” +)

K2 2 2 2, 2 2 k 2 2
+7[’7X(v +W)yl+r’r(u +W)q]+7’_"('7x+’lr)Tq}

[2#(€x’7xuur] + ir"’rvvr,) +)'gx("xuuq + "rwn) + l{r(”xvun + 'lrwq) + An, % (Sxu+ é,v)rn

2
w
+ udxlnvigy + v, + noww,) + ud (n,00, + nam, + nww,) — pé, ——

k
+ e Conet f,»m,,]

1
Re

r

) 1
(FVZ)S =7 [2“(71,(5;““; + ’Irfrvvf) + Anx(éxuuz: + érwg) + l"’r(éxvuf + frvv§) + 48, % (nxu + ﬂrV)r,;

2
(S + Sovve + Soww) + pn (Gt + Exuvg + Ewwy) — pm, WT

k .
+ ‘H (r]xfx + ’Irfr)lg:'

The elements of the Jacobian coefficient matrix dE/dQ for the inviscid terms in the axisymmetric form
of the encrgy equation are

OEs ap op op ap ap
o =l:—fx(fz“$> fz@ﬁﬁm LHé+h o) f 3(pw) §z+f1(1+6—ET)J

where f, = ué, +v¢, and £, = (E; + p)/p.

The elements of the Jacobian coefficient matrix dL, /0Q for the viscous terms are
dEp)s OEy, OEy, 3Ey, JEy, a (oT)
A =T A A A A %S\ 37
2Q ke Q /g Q /s Q /s 0Q Jo %\

152 PROTELS 2-D Subprograms: COEFE PROTEUS Programmer’s Reference

where

ok,
) -, o q(u 3 (v, . oT
) e () o (3)+ s S (o)
0Q /sy
oE,
1 0 u 0 y , Vv , Vv 0 oT
0 ma 2 (£) b2 (F) v e et (5)
o), EE 3¢ \ 3(pv)
N
Fv \ _, 2 (%) a2 (S
A ZgE\ P 0738 \ d(pw)

0Q /s

dpx = (2u+ HEE+ pél

@y = péa+ Qu+)&

2
ay, =pulx+ .“63
ay = (u+)EE,

’ A ;
Axr = $xér

. A g2
%y =T€r
k

2 2
Pr, (éx + ér)

dg =

As in 2-D planar flow, the Jacobian coefficient matrices 01%/66 and a(%yl)s/a() have the same form as
9E/0Q and O(E,)s/0Q, but with ¢ replaced by ».

Note that the equations for 2-D planar and axisymmetric flow are very similar. In the axisymmetric
equations there are some additional terms involving the radius » in the viscous flux vectors, with corre-
sponding terms in the Jacobian coefficient matrices. The radius r appears as an additional coefficient in

front of the flux vectors ﬁ, IAEVl, etc., and in front of the Jacobian coefficient matrices 6[:15/6(), a(ﬁ:vl)s/a(),

etc. In addition, 1/r appears in front of every term in the equation except the AE, terms. In PROTEUS,
the Fortran variables are defined in such a way that, for many terms, the same coding can be used for both
2-D planar and axisymmetric flow. Unfortunately, this may make some of the coding a little confusing.
It is hoped that this detailed description, when compared with the source listing, will help make things clear.

In COEFE, the coefficients of the left hand side, or implicit, terms are defined first. The implicit terms
for the second ADI sweep have exactly the same form as for the first sweep, but with ¢ replaced by n. By
defining DEL, METX, METY, and METT as the grid spacing and metric coefficients in the sweep direc-
tion, the same coding can be used for both sweeps. The variable RAX is equal to 1 for 2-D planar flow,
and the radius r for axisymmetric flow. This adds the 7 in front of the Jacobian coefficient matrices for
axisymmetric flow, but has no effect for 2-D planar flow. The 1/r coefficient in front of each term will be

added later. In this section of code, the coefficient of Aér (part of B(IV,ILNEN,NET)) is set equal to r, not
1 as it should be. This will be corrected later.

PROTEUS 2-D Programmer’s Reference PROTEUS Subprograms: COEFE 153

The source term, or right hand side, for the first sweep is defined next. The difference formulas used to
compute the source term are the same as those used for the implicit terms. These formulas are presented
in Section 6.0 of Volume 1. For axisymmetric flow, the Fortran variable JI, which is normally defined as
17/, is temporarily redefined as /J/ before the COEF routines are called. This automatically accounts for
the r coefficient in front of all the flux vectors in the source term. The 1/r coefficient in front of cach term

will be added later. This definition of JI adds an r in front of the Aé}“‘ term that should not be there. This
will also be corrected later.

The coding for the source term for the second sweep, which consists only of Aé}, comes next. The
definition of JI also adds an r in front of this term that should not be there.

And finally, for axisymmetric flow, the entire equation is divided by the local radius . This adds the
1/r coefficient where it should be added, and removes the 7 in front of the AE; terms.

Remarks

1. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

2. The subscripts on the Fortran variables A, B, C, and S may be confusing. The first subscript is the
index in the non-sweep (i.e., “vectorized”) direction, and the second subscript is the index in the sweep
direction. For sections of the code that apply to both sweeps (i.e., the implicit terms and the division
by r at the end), the first two subscripts are written as (IV,I). For sections of the code that apply only
to the first sweep, the first two subscripts are written as (I2,I1). For sections that apply only to the
second sweep, they are written as (I1,12). The third subscript on A, B, C, and S corresponds to the
equation. And, for A, B, and C, the fourth subscript corresponds to the dependent variable for which
A, B, or C 1s a coefficient.

3. The coding of the extra coefficients and source terms in the axisymmetric form of the equations is
scparate from the rest of the coding, and is bypassed if the flow is not axisymmetric. Similarly, the
coding of coefficients and source terms involving the swirl velocity is separate from the rest of the cod-
ing, and is bypassed if there is no swirl.

4. The Euler option is implemented simply by skipping the calculation of the coefficients and source terms
for the viscous and heat conduction terms.

5. 'The thin-layer option is implemented by skipping the calculation of the coefficients and source terms
for the viscous and heat conduction terms containing derivatives in the specified direction.

154 PROTELUS 2-D Subprograms: COEFE PROTEUS Programmer’s Reference

Subroutine COEFX

Called by Calls Purpose
EXEC Compute coefficients and source term for the x-momentum equation.
Input

ALPHA
* ALPHAIL, ALPHA2

DEL

DPDRHO, DPDRU, DPDRY,
DPDRW, DPDET

DTAU

DXI, DETA

ETAX, ETAY, ETAT
* JAXI

IBASE, ISTEP

* 1EULER
ISWEEP
* ISWIRL
* ITHIN
v
I, 12
J1

METX, METY, METT
MU, LA

NEQ

NPTS

NR, NRU, NRV, NRW, NET
NXM

p
RAX

* RER
RHO, U,V
RHOL, UL, VL

Spatial difference centering parameter « for the sweep direction.

Spatial difference centering parameters «, and «,, for the ¢ and »
directions.

Computational grid spacing in sweep direction.
Derivatives dp/dp, dpld(pu), dp/d(pV), dp/i(pw), and Op/dEr.

Time step Ar.

Computational grid spacing A{ and An.

Metric coefficients n,, n, (or #, if axisymmetric), and 7,.
Flag for axisymmetrnic flow.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Flag for Euler calculation.

Current ADI sweep number.

Flag for swirl in axisymmetnc flow.

Flags for thin-layer option.

Index in the “vectorized” direction, i,.

Grid indices i and J, in the ¢ and » directions.

Inverse Jacobian of the nonorthogonal gnd transformation, J-!
(times the radius r for axisymmetric flow.)

Derivatives of sweep direction computational coordinate with re-
spect to x, y (or r if axisymmetric), and ¢.

Effective cocfficient of viscosity u and effective sccond coefficient
of viscosity 4 at time level n.

Number of coupled equations being solved, N,,.
Number of gnid points in the sweep direction, V.

Array indices associated with the dependent vanables p, pu, pv,
pw, and Fr.

Array index associated with the x-momentum equation.
Static pressure p at time level n.

1 for two-dimensional planar flow, and the local radius r for
axisymmetric flow.

Reference Reynolds number Re,.
Static density p, and velocities « and v at time level n.

Static density p, and velocities » and v from previous ADI sweep.

PROTELS 2-D Programmer’s Reference : PROTELUS Subprograms: COEFX 135

* THX Parameters 6,, §,, and 6, determining type of time differencing for
the x-momentum equation.

XIX, XIY. XIT Metric coefficients £,, £, (or &, if axisymmetric), and &,
¥ Y ¢
Y Radial coordinate r for axisymmetric flow.
Qutput
A, B, C Coefficient submatrices A, B, and C at interior points (row
NXM only).
S Source term subvector S at interior points (element NXM only).

Description

Subroutine COEFX computes the coefficients and source term for the x-momentum equation.
Equations (8.5a-b) in Volume 1 represent, in vector form, the four governing difference equations for the
two ADI sweeps for 2-D planar flow. The elements of the inviscid flux vectors E and F are given in Section
2.0 of Volume 1, and the elements of the viscous flux vectors E,, Evz, etc., are given in Appendix A of

Volume 1. The Jacobian coefficient matrices 61:2/0(), afzvl/aé, etc., are given in Section 5.0 of Volume 1.
Using all of these cquations, the differenced form of the x-momentum equation for 2-D planar flow may
be written for the two ADI sweeps as!?

Sweep 1 (€ direction)

A n n A n
Ne 0,AT JF, o, \ as oK, A
0,A7 non A AN* nona nono At
[V + 8180 — (i + 26+ £3) 8P AQ; + (fi+ fiyy) 8418Qi1,] =
(1+0,)2(A8)
AT /\‘ /\‘ n AT A A n
“Thve (6:E; +6,F,) tTre [8:(Ey,), + 6,(F)),]
(1+0)Ar A A, n o 03A7 A A n-1 9, A el
T A B Sl LA MUY B 3y A0

Sweep 2 (direction)

A n A n A n
n 0,At JF A oF A JF A
AP} + 71710—)&3—7 —a 22 AQL, +2u— 1| =&) AQ) +(1 -)| =2 AQ},,
2 Q Jjm Q J; 0Q /i
UIAT n_n \n PR PUAY, n_n An
BT [t + 5 G8Q, = (foy + 2+, 8/ 8Q) + (f+ f4)"8/418Q)] =
2=
A

In the above equations, the subscripts i and j represent grid point indices in the ¢ and # directions. For
notational convenience, terms without an explicitly written i or j subscript are understood to be at i or J-

19 These equations are written assuming the energy equation is being solved. For a constant stagnation enthalpy case,
the total energy £ would not appear as a dependent variable, and the Jacobian coeflicient matrices would have
only three elements.

156 PROTELS 2-D Subprograms: COEFX PROTELUS Programmer’s Reference

On thc left hand side, /is the coefficient of 3/3¢ (or 3/dy, depending on the sweep) in the « h /(Q (o1
°P, /«EQ) Jacoblan coefhcxcm matrix. Similarly, g is the term in the parentheses following /38 (or 3{0n)
n the e LV (’Q {or Fl~, /<'Q Jacobian coefficient matnx.
I'he vector of dependent vanables 15
N 1 ,1
Q="lp pu pv £7]

T'he appropriate elements of the inviscid flux vectors are given by

Bo=L

~

[(pu* + P)Ex + pové, + pul]
fo]
l“2:7[(P“ + Py + pron, + pun,]

I'he appropriate elements of the non-cross derivative viscous tlux vectors are

o 11 2 £

(hl',)z 7 —7,~ [2y e+ A5 (S $ve) b g (U + fxv,;.)}
1 2 . ,

(k V|)3 =7 IE;; [2 My A (s, +onyvy) (g, + n_x,vn)]

And the appropriate elements of the cross derivative viscous flux vectors are

1] .)

uﬂh:7R,Pwmaﬁwum%+ww+um%w+mJ1
* r

(FV_?)z - T

S [2pn [s‘lh + /;]x{viu, + & \;) + (& R &y);
] /\ y ¥

© oA
I'he elements of the Jacobian coefficient matrix JE/GQ for the mvisad terms o the x-momentum
¢quation are

. ~ -
ok, ap ap ap ap
= _t r £ x A 4 £ £ 4
- -1, o, tul, + .o uwkE A — <
«?(\) [dp X /i Gt h X o(puy TN ey =X My o x
where /] = ué 4+ v,

I'he elements of the Jacobian cocefficient matrix 0L, /#Q for the viscous terms arc

~]’\
. 35
172 1 ey

vz (7) e (3)
L A A

where
o, | o
| a u J v
=Tk 2 Vo) T %y 3 \ o)
Q| /s(p) ag(p,
= (Qu+ A+ #éi
PROTELUS 2-

D Programmer’s Reference

PROTELS Subprograms: COEFX 157

ayy = (u + A58,

The Jacobian coefficient matrices 6[1‘2/0(3 and 6(IA-‘Vl)2/6(A) have the same form as af:z/a() and 6(EAZV[)2/6(A),
but with ¢ replaced by .

As an example of how these equations are translated into Fortran, consider the A(pu/J/) term on the left

hand side for the first sweep. This is the second element of Q so using the second element in ai;z/aé, and
including the A(pw)’ term, we get for the inviscid term

. . 8,(A7); , ap
A(IV,I,NX;\[,;\RU)=(1—+—02)T£(—-OL) (ét)i—l,j+(u§x+"§y)[—l,j+(u'vx)i—l,j+ mfx .y

8(AT); 4

op
T +0,)A8 (2a — I)I:(il)z,j + U+ V) (uey); i+ (o0 fx)l_'j} +1

B(IV.LNXM,NRU) =

~ S Bx(A‘f)i,j op
C(IV,I,;\XM,.\Rb)zm(I—a) g, j+ @+ vy 4 Wiy + Ws‘x .y

For the viscous terms on the left hand side, we use the second element in 6([A§V])2/6(A), which is

-
Re, "3z \ P

Thus f= a,,/Re, and g = 1/p. To add the viscous contribution to this part of the A coefficient submatrix,
we therefore set

i) 0,(A7); ;
ATV, LNXM,NRU) = A(IV,I,NXM,NRU) —

1
Axxdio1 i ()i j
U+ aaaniRe T A+

i—1,j
Similar equations may be written for the B and C coefficient submatrices.

The equations for axisymmetric flow are developed in Appendix B of Volume 1. The axisymmetric
x-momentum equation for the two ADI sweeps 1s given by

Sweep 1 (¢ direction)

A n A n A n
. 9,8 oK, A 3E, \ A 3K, A
Apu); + Txeprr| A 2 AQ +Qa—ND|7r —= JAQ, +(1 ~a)| r — AQ,,,
I Q /., 9Q J/; 0Q /i

glAT 1 n_n o "aAQ, g, 0,
- m T [(ri—lfl—l + r(f;) g(—lAQ(—l - (ri—lf;—l + 2’:-/: + '(*lj;d-l) & AQ: + (’l—/; + ’Mlj;*l) g‘*lAQ”'l] =
3 fez T[4 Ep+ 60 F)] + 1 ?-102 T {ofr @v] + 5[r ¢ V\)Z]}n
Y . . an 6A : Pl + 2 Ay
(_11% L (s fr Ep)]+ 8[r Fv o)) _1_%;;} {8r ®v)a] + &[r Fu]} gn 1+292 Apuy™™!

0 These equations are written for the general case with swirl. For a non-swirl case, the swirl momentum pw would
not appear as a dependent variable, and the Jacobian coefficient matrices would have only four elements.

158 PROTELS 2-D Subprograms: COEFX PROTEUS Programmer’s Reference

Sweep 2 (5 direction)

A n A n 7 A n
. 8,z ¢F . oF . oF R
A+ —2 L s D2) AQr v r =2 JaQi+a-a|r =5) aQ),
(] +92)A" r . 7 / J
/., 2Q /, aQ /.,
BlAT 1 AN A"n 2 nanA‘Kn n,n AAn _
2 ‘r‘[(’,r~1f/—l+51) 8 QI = O i H 205+ 1) 8 AQ (S 1 f01) 81 8Q | =

(40,23
Apw)’

where now

A 1 T
Q=—1lp pu pv pw [f]
E, = — [(pu’ + p)Eg + ptoé, + put,]

A
~ 2
l‘2 = [(pu” + pyng + pon, + pw],]

= =

B = 7 {2t 10 G+ 5 ;] - e + 20}

2 1 1
(P V])2 = 7 Re

r

2 |
Lovortay + in om0, | + ot + n,p

AS 1 1
(LVZ)Z = 7 Re

r

. 1
{2fo'lxuy, + A‘fxl}"xuq ++ "r(”’)y;] + “ér(’?run + ﬂxvr,)}

= 1 1 . 1
(FV2)2 =7 Re {2#71x§xll§ + ""nxl:fxug ++ f,(n‘);] + “nr(érug + ‘fx"g)}
r

The elements of the Jacobian coefficient matrix dE/dQ for the inviscid terms in the axisymmetric form
of the encrgy equation are

ok, [ap . ap op % op
0(/\) _liaéx—uﬁ Sl+-fi +u§x+ a(pu) ix u§r+ a(pv) éx a(p‘v) éx aET :X:l

where f] = u&, +v&.

The elements of the Jacobian coefficient matrix 0k, /0Q for the viscous terms are

a(év)2 aév
1 1 1 o (1) g (1) , A
A = A Xax Eyr + a, r{ 0 0
20 Re, 0 /. ar \p t \ P b

where

<
@)
o

toe = (Qu+ D+ uE

g, = (1 + A&,

PROTEUS 2-D Programmer’s Reference PROTELUS Subprograms: COEFX 159

=

e

%

it
~ I~
o ye
-~

LA
3

As in 2-D planar flow, the Jacobian cocfficient matrices dF,/8Q and G(FVI)Z/@Q have the same form as
AE,/6Q and A(k; 1:/7Q, but with £ replaced by #.

Note that the equations for 2-I planar and axisymmetnic flow are very similar. In the axisymmetric
equations there are some additional terms involving the radius r in the viscous flux vectors, with corre-
sponding terms in the Jacobian coefficient matrices. The radius » appears as an addm()ndl L()LﬂlLanl in

front of the flux vectors P l- , ¢te., and 1n front of the Jacobian coefficient matrices thlu() a(h,, f«"()
etc. In addition, 1/r appears in front of every term in the equation except the A(pu) terms. In PROTELUS,
the Fortran nmdhlns are defined in such a way that, for many terms, the same coding can be used for both
2-I> planar and axisymmetric flow. Unfortunately, this may make some of the coding a little confusing.
It is hoped that this detailed desc ription, when Lomp\lrcd with the source listing, will help make things clear.

In COEFX, the cocetficients of the left hand side, or implicit, terms are defined first. The implicit terms
for the second ADI sweep have exactly the same form as for the first sweep, but with £ replaced by . By
definmg DEL, METX, METY, and METT as the grid spacing and metnc Locfﬁucnts in the sweep direc-
tion, the same coding can be used for both sweeps. The variable RAX is equal to 1 for 2-D planar flow,
and IhL radius » for axisyinmetric flow. This adds the r in front of the Jacobian coefficient matrices for
axisymmetric tlow, but has no cffect tor 2-1 planar flow. The 1/r coefficient in front of each tenm will be
added later. In this section of code, the cocfficient of Alp) (part of B(IV,LNXM,NRU)) is sct equal to 7,
not | as 1t should be. This will be corrected later.

The source term, or night hand side. for the first sweep is defined next. The difference formulas used to
compute the source term are the same as those used for the implicit terms. These formulas are presented
in Scction 6.0 of Volume I For axisymmetric flow, the Fortran varable J1, which is normally defined as
1/, 1s temporanly redefined as #// before the COEF routines are called. This automatically accounts for
the r cocfficient in front of all the tlux vectors in the source term. The 1/r coefficient in front of cach term
will be added luter. This definition of J1 adds an r in front of the A(pw)* ! term that should not be there.
This will also be corrected later.

The coding for the source term for the second sweep, which consists only of A(p2)", comes next. The
definition of JI also adds an #in front of this term that should not be there.

And finally, for axisvinmetrie flow, the entire equation is divided by the local radius . This adds the
I/r coetlicient where 1t should be added, and removes the 7 in front of the A(p) terms.

Remarks

L. This subroutine uses one-dimensional addressing of two-dimensional arrays, as described in Section 2.3.

tJ

‘The subsceripts on the Fortran vanables A, B, C, and S may be confusing. ‘The first subscript is the
index in the non-sweep (1e., “vectorized”) direction, and the second subscript is the index in the sweep
direction. For sections of the code that apply to both sweeps (i.c., the implicit terms and the division
by r at the end), the first two subscripts are written as (IV,I). For sections of the code that apply only
to the first sweep. the first two subseripts are written as (12,11). For sections that apply only to the
sccond sweep. they are written as (11.12). The third subscript on A, B, C, and S corresponds to the
cquation. And, for A, B. and C, the fourth subscript corresponds to the dependent vanable for which

A, B, or C1s a coethicient.

3. The coding of the extra coetlicients and source terms in the axisymmetric form of the equations is
separate from the rest of the coding, and is bypassed if the flow is not axisymmetric. Similarly, the
coding of coctticients and source terms involving the swirl velocity is separate from the rest of the cod-
g, and 1s bypassed if there is no swirl.

4. The Euler option is implemented simply by skipping the calculation of the coefficients and source terms

for the viscous terms.

160 PROTELS 2-D Subprograms: COEFX PROTELUS Programmer’s Reference

5. The thin-layer option is implemented by skipping the calculation of the coefficients and source terms
for the viscous terms containing derivatives in the specified direction.

PROTELUS 2-D Programmer’s Reference PROTELUS Subprograms: COEFX 161

Subroutine COEFY

Called by Calls Purpose
EXLC Compute coefficients and source term for the y or r-momentum
equation.
Input
ALPHA Spatial difference centering parameter « for the sweep direction.

* ALPHAIL, AL PHA2

DEL

DPDRHO, DPDRU, DPDRYV,
DPDRW, DPDET

DTAU

DXI, DETA

ETAX, ETAY, ETAT
* 1AXI

IBASE, ISTEP

* IEULER
ISWEEP
* ISWIRL
* ITHIN
IV
I, 12
J1

METX, METY, METT

MU, LA

NEQ

NPTS

NR, NRU, NRV, NRW, NET
NYM

p
RAX

* RER
RHO, U, V, W

Spatial difference centering parameters «, and a,, for the ¢ and »
directions.

Computational gnd spacing in sweep direction.

Denvatives 8p{dp, dp/d(pu), dp{d(pv), dpjd(pw), and dp/dE;.

Time step Ar.

Computational gnd spacing A¢ and Ay.

Metric coefficients »,, n, (or », if axisymmetnc), and 7,
Flag for axisymmetric flow.

Base index and multiplication factor used in computing one-
dimensional index for two-dimensional array.

Flag for Euler calculation.

Current ADI sweep number.

Flag for swirl in axisymmetric flow.

Flags for thin-layer option.

Index 1n the “vectonzed” direction, i,

Grid indices iand J, in the ¢ and » directions.

Inverse Jacobian of the nonorthogonal grid transformation, J-!
(times the radius r for axisymmetric flow.)

Denvatives of sweep direction computational coordinate with re-
spect to x, y (or r if axisymmetric), and ¢.

Effective coefficient of viscosity u and effective second coefficient
of viscosity 4 at time level n.

Number of coupled equations being solved, N,,.
Number of grid points in the sweep direction, N.

Array indices associated with the dependent variables p, pu, pv,
pw, and £

Array index associated with the p-momentum (or r-momentum if
axisymmetric) equation.

Static pressure p at time level 7.

1 for two-dimensional planar flow, and the local radius r for
axisymmetric flow.

Reference Reynolds number Re,.

Static density p, and velocities u, v, and w, at time level n.

162 PROTELUS 2-D Subprograms: COEFY PROTELS Programmer’s Reference

RHOL, UL, VL Static density p, and velocities « and v from previous ADI sweep.

* THY Parameters 0, 8,, and 0, determining type of time differencing for
the y-momentum equation.
XIX, XI1Y, XIT Metric coefficients £, &, (or &, if axisymmetric), and £,.
Y Radial coordinate r for axisymmetric flow.
Qutput
A, B, C Cocfficient submatrices A, B, and C at interior points (row
NYM only).
S Source term subvector S at interior points (element NYM only).

Description

Subroutine COEFY computes the coefficients and source term for the y-momentum cquation for 2-D
planar flow, or the r-momentum cquation for axisymmetric flow. Fquations (8.5a-b) in Volume 1 repre-
sent, in vector form, the four govermng difference cquations for the two ADI sweeps for 2-D planar flow.
The elements of the inviscid flux vectors E and F are given in Section 2.0 of Volume 1, and the clements

of the viscous flux vectors Ey , Ky, ete., are given in Appendix A of Volume 1. The Jacobian coefficient

matrices OIAZ/@(A), aﬁ:vl/ao, etc., are given in Section 5.0 of Volume 1. Using all of these equations, the
differenced form of the y-momentum equation for 2-D planar flow may be written for the two ADI sweeps
as?!

Sweep | (& direction)

N n s n n
A _* OIAT 0}':3 o al‘:3 Nox 6?:3 N ox
N vyl Bk B AQ +(Qx—D| —=) aQi+ (-0 — AQ;,,
(1+0,)8¢ Q)i Q), Q)i
#,At nonoARN* 5 nonan® n_n A* _
Ty [(fi—1 +)8 A — (fing + 2+ fi) & AQ + (i + f) gi+lAQi+l] =
(1+0,)2(A)
AT 43 AN At A o, 7t
- Ti 0 (8:F5 +6,F3) + 6, [6:(Ey)s + 6,(Fp)s]
(1+ 85)Ar A A n 0;A7 A A n—1 8, A onel
—T;@—[éghyzma,,u 1)) —W[ég(hg)g+5n(%)3] T g; A

Sweep 2 (y direction)

A n A n S n
N 0 At JF A oF A oF A
A(pv);'+(—l+—19—)A—n— —a| —2 AQL, + (22— 1) 2 aQi+ (-)| =2 AQ},
2 Q /i Q /; 0Q /i
0,At n_n o n_RaAn nn n
- m[(ﬁ-l + [)'gLAQL — (o + 2+ f41) '8 8Q + (i + fi4d) gr18Q0] =
2
A

21 These equations are written assuming the energy equation is being solved. For a constant stagnation enthalpy case,
the total energy E would not appear as a dependent variable, and the Jacobian coeflicient matrices would have
only three elements.

PROTEUS 2-D Programmer’s Reference PROTELUS Subprograms: COEFY 163

In the above equations, the subscripts i and j represent gnd pomt indices in the ¢ and »n directions. For
notational convenience, terms without an explicitly written 7 or j subscript are understood to be at i orj.

On the left hand side, f'is the coefficient of 8/8¢ (or 8/8n, depending on the sweep) in the OEV /6Q (or
dF /5Q) Jacoblan coeﬁicwnt matrix. Similarly, g is the term in the parentheses following 9/3¢ (or 8/d)
in the aEV /éQ (or aF " /aQ) Jacobian coefficient matrix.

The vector of dependent variables is
A l T
Q=—Flp pu pv Ef]
The appropriate elements of the inviscid flux vectors are given by
~ 1 2
Ey =7 [owés+ (pv" + p)¢, + pvé)]
- 1 2
Fy == [owne+ (v + Py + pn,]

The appropriate elements of the non-cross derivative viscous flux vectors are

o 208, + 8 + &0 + nallyi +)]

|-

(Ep)z =

~ 1 1
(FVI)3 = 7 Re

2
[2unyv,, + AnyCrx, + myv,) + pnlnyy, + v,

r

And the appropriate elements of the cross derivative viscous flux vectors are

A 1 1
r

~ 1 1
(Fl’2)3 = 7 e [2;171},ny§ + ’lny(éxug + ny§) + /‘r’x(éyug + fxvg)]
r

The elements of the Jacobian coefficient matrix éEléQ for the imnviscid terms in the y-momentum
equation are

2Q

where f] = ué, + v,

ap ap ap
ST g S AT Y _alf_rﬂ

A
dp

The elements of the Jacobian coefficient matrix JE,,{6Q for the viscous terms are

LT S BT
N - xy Yy
Q Re; 5’6 31 0\ P % \F
where

Al

) _ 2 (% 2 (2)

A BRREATT: P)"“Wac 2

aQ /s

164 PROTELUS 2-D Subprograms: COEFY PROTEUS Programmer’s Reference

gy = (1 + DS,

2 <y gl
Tyy = ‘“éx + (2” + /‘.)Q),
The Jacobian coefficient matrices 0F;/0Q and A(F,. },/cQ have the same form as ¢E;/3Q and &(E,);/0Q,
but with & replaced by ».
As an exanple of how these equations are translated into Fortran, consider the Ajpu//) term on the left
hand side for the first sweep. This is the second clement of Q, so using the seecond clement m GFL/AQ, we

get for the inviscid term

’

OI(AT)"' (?[) \
& (=) (vE); 1./ + (Y f«\,)

A(IVINYMNRU) = ———

(1 +0)A8 Sty
B(IV,,NYM,NRU fda, 1~r ; (oo
S)= (1+ 02)1,\";" (2 = D e \\ ’?(”.l-” Sy i
C(IV,LNYM,NRU 0By T
(y by i¥hy . ‘) _ (l + 02) :_ (\ — a) (}")\)5‘4’1._/- + (\ ﬂ(/)u) ‘3)/_)’)!“*‘1‘/

For the viscous terms on the left hand side, we use the second clement in (E,. 3,/¢Q, which 1s

e L)
Re, "™ 08 \ P
Thus /= x,,/Re, and g = 1/p. To add the viscous contribution to this part of the A cocflicient submatrix,

we theretore set

0] (L\T)AJ

A(IV.LNYM,NRU) = A(IV,LNYM,NRU) — [(r iy + (o ,,](—/1) s
e e St

(14 0)2A)" Re,
Similar cquations may be written for the B and C cocfficient submatrices.

The cquations for axisymmetric flow are developed in Appendix B of Volume 1. The axisymmetric
s-momentum cquation for the two ADI sweeps 1s given by™

22 These equations are written for the general case with swirl. For a non-swirl case, the swirl momentum pw would
not appear as a dependent variable, and the Jacobian coefficient matrices would have only four elements.

PROTELS 2-D Programmer’s Reference PROTELS Subprograms: COEFY 165

Sweep | (£ direction)

A n ~ n A n
AL 8,Ar 1 oE, X ¢Ey A CE; "
A(p"),+m—,‘ —atr— AQ | +Qa—-) r — AQ, + (1 —a)| r — AQ,,,
(2) > aQ 1 aQ ; 50

i+1
GIA‘r 1 . n_n ne nonaAt n_n Iy
- WT [(rl—ljl-l + rljl) gl~lAQl—l - (rl—lj;—l + 2’1—/; + rl?lf;+l) 8i AQ(+ (rlfr + rH-l/;‘l) gl*lAQl*l]
2 3

0.ac 1 | oy adiy, |oa. Ar 1 X . am
v, T [o o |T¥TTTea T[S B + 6 By + 1y

T S DN DR UN PR S N TN PN
;A1 A A a1 4
] _::_92 % {5¢[’ (EV2)3J + 5,7[’ (FV2)3]} +3 +292

A (/;‘V)n— 1

Sweep 2 (n direction)

A n A n ” n
. 6,A oF « aF A aF A
ApY); + —(ﬁ % [: - a<r 3 > AQT | + 2z~ 1)(! 3 > AQ)+(1 - a)<r 3 AQT,,
2 2Q /. oQ oQ
J-1 J

j+1
OIAT 1 n n n n_nan n_n n
- ——-—(1 8,200 N [(’/_lf;.—l SV AQy — i [+ 2 f 4)8 AQT + i fi+ i fien) gj-rlAQj+l] =
2)43n

A(pAv).

where now

A l . =
Q=—lp pu pv pw EA"
A 1
E;= 7 o+ (pv° + p)é, + pvé,]

1
F; = 7 Lo, + (pv" + p)n, + pvn.]

(ﬁvl)3 = '}‘ Rle {2#53"; +)ﬂfr[fxl‘; + % fr(”V)§] + 18 (Sup + fxvg)}

1

€

4 1 2 1
(FVI)3 = 7 {2#'1rv., + ’J"/rl:nxuq + Wr(rv)r,] + l“’lx("rur, + 'lxvq)}

]

A 11 1
(EV2)3 = 7 Re {Zﬂfr’lr"q +)‘fr["lxun + r nr(rv)rlJ + /‘éx(ylr“q + ”xvq)}
r

1
R {2um s + anf e+ -E o, |+ on, g + top)

r 1
(FVZ)IS =7

N |
H3=7(—P"PW2)

(Hy)y = o =205 = 2t + ne) + 2 (600, + i), 1}

r

The H and H, terms, which do not appear in the 2-D planar form of the equations, result from the non-
conservative form of the axisymmetric equations.

166 PROTELS 2-D Subprograms: COEFY PROTELUS Programmer’s Reference

The elements of the Jacobian coefficient matrix dE/@Q for the inviscid terms in the axisymmetric form
of the energy equation are

P - % op o
&—vi vex+ Apu) &G GthiAve pv) G O(pw) o 0Lt ér]

N
oQ L%
where f, = ué, + vé,.

The elements of the Jacobian coefficient matrix JE,,/dQ for the viscous terms are

MEv)s %y, 2 (1 3 (1 , 1
TS x g\ 7) o\)t ol 00
2Q , LI s

where

JoE
o) e () g (3) -

g, =(u+ Aexé
ay = p&h + Qu+ DE

A 2
7 &

r
Gy =

As in 2-D planar flow, the Jacobian coefficient matrices 6]2‘3/6(”2 and 6(f7yl)3/66 have the same form as
0E;/0Q and 9(Ey,)3/0Q, but with { replaced by ».

The elements of the Jacobian coefficient matrix aﬁ/aé are

—+w - - — 2w - =
% d(pu) (pv) d(pw) OEr

oH; [p ap ap ap ap]
aQ

The elements of the Jacobian coefficient matrix aﬁv/aé are

A N N N
0(HV)3 _ 1 OHV 6HV 0HV 0 0
N Il N A
0@ R\ eq)5 \ aQ /i \ 8@ /i
where
A
oHy a u 0 v d u
=) =regp (F) gy () gy ()
0Q /3
. 1 v 0 v
+[7“+/.(§,r§+n,rn)]7?+)n, on (7)
N
My N e i(_l_)_;,, L(L)
A - "X P i x a P
oQ 1 ¢ n

PROTELS 2-D Programmer’s Reference PROTELS Subprograms: COEFY 167

ﬁlﬁlr 3 1 11 d 1
__r — g Y {2 Y _m i 2 g, YL
FQ 33 e o5 (P > R p oy (P)

\

Note that, except tor the additional H and H,. terms, the equations for 2-D planar and axisymmetric flow
arc very similar. In the axisymmetric equations there are some additional terms involving the radius r in
the viscous flux vectors, with corresponding terms in the Jacobian cocfficient matrices. The radius r appears
as an additional coetticient 1n front of the flux vectors E, Eyl, ete., and in front of the Jacobian coefficient
matrices CEy/3Q, &(E,),/8Q, ete. In addition, 1/r appears in front of every term in the equation except the
Alpr) terms. In PROTEUS, the Fortran varables are defined in such a way that, for many terms, the same
coding can be used for both 2-D planar and axisymmetric flow. Unfortunately, this may make some of the
coding a little confusing. It is hoped that this detailed description, when compared with the source listing.
will help make things clear.

In COEFY, the coefficients of the left hand side, or implicit, terms are defined first. With the cxeeption

of the H and H. terms, which only appear in the first ADI sweep, the implicit terms for the sccond sweep
have exactly the same form as for the first sweep, but with ¢ replaced by 4. By defining DET, METX,
METY, and METT as the gnd spacing and metric cocfficients in the sweep direction, the same coding can
be used for both sweeps. The variable RAX is equal to 1 for